Pentium D - серия двухъядерных процессоров: обзор, характеристики, отзывы. Разгоняем Pentium II

Внутренняя структура (микроархитектура) процессора Pentuim 4 значительно отличается от микроархитектуры предшествующих моделей Pentium II, Pentium III, Celeron. Наряду с микроархитектурой существенно изменилась и архитектура систем, реализуемых на его основе. Новая системная архитектура, использующая процессор Pentuim 4 и набор специализированных микросхем Chipset 850, выпускаемых компанией Intel, обеспечивают значительное повышение производительности - от 23 до 87% при решении различного класса задач. В 2001 году планируется быстрый рост производства Pentium 4 и повышение его тактовой частоты до 2 ГГц. В 2002 году объём выпуска Pentium 4 превысит Pentium III, и этот процессор станет основной продукцией компании Intel.

Развитие архитектуры IA-32 в семействе Pentium

Общая архитектура процессора определяет комплекс средств, предоставляемых пользователю для решения различных задач. Эта архитектура задаёт базовую систему команд процессора и реализуемых способов адресации, набор программно-доступных регистров (регистровая модель), возможные режимы работы процессора и обращения к памяти и внешним устройствам (организация памяти и реализация обмена по системной шине), средства обработки прерываний и исключений.

В процессоре Pentium 4 реализуется архитектура IA-32 (Intel Architеcture-32), общая для всех 32-разрядных микропроцессоров Intel, начиная с i386. В табл. 1 приведены основные модели процессоров, в которых используется эта архитектура, и некоторые их характеристики. Отметим, что модели Pentium II Xeon и Pentium III Xeon ориентированы на работу в высокопроизводительных мультипроцессорных системах (серверах, рабочих станциях). Для этих же приложений планируется выпуск в 2001 году модификации процессора Pentium 4 с поддержкой мультипроцессорного режима работы (название проекта - Foster).

Таблица 1. Некоторые характеристики процессоров архитектуры IA-32

Модель, начало выпуска Число транзисторов Тактовая частота, МГц Объем внутренней кэш-памяти
i386, октябрь 1985 г. 275 тыс. до 40 Нет
i486, апрель 1989 г. 1,2 млн. до 100 8 Кбайт - команды
8 Кбайт - данные
Pentium, март 1993 г. 3,1 млн. до 200 8 Кбайт - команды
8 Кбайт - данные
Pentium Pro, ноябрь 1995 г. 5,5 млн. до 200 8 Кбайт - команды
8 Кбайт - данные
Pentium MMX,
январь 1997 г.
4,5 млн. до 233 8 Кбайт - команды
8 Кбайт - данные
Pentium II,
май 1997 г.
(Xeon, июнь 1998 г.)
7,5 млн. до 450 16 Кбайт - команды
16 Кбайт - данные
Celeron,
аперль 1998 г.
до 750 128 Кбайт - общий
Pentium III,
февраль 1999 г.
(Xeon, март 1999 г.)
8,5 млн. до 1000

(до 700)

16 Кбайт - команды
16 Кбайт - данные
Pentium 4,
ноябрь 2000 г.
(Foster, 2001 г.)
42 млн. до 1500 256 Кбайт - общтй
12 К - микрокоманлы
8 Кбайт - данные

История архитектуры IA-32 насчитывает уже более 15 лет, и её основные черты достаточно полно описаны в ряде монографий (например, в ). Поэтому ограничимся их кратким обзором.

В процессе развития IA-32 производилось расширение возможностей обработки данных, представленных в различных форматах (рис. 1). Процессоры i386 выполняли обработку только целочисленных операндов. Для обработки чисел с “плавающей точкой” использовался внешний сопроцессор i387, подключаемый к микропроцессору. В состав процессоров i486 и последующих моделей Pentium введён специальный блок FPU (Floating-Point Unit ), выполняющий операции над числами с “плавающей точкой”. В процессорах Pentium MMX была впервые реализована групповая обработка нескольких целочисленных операндов разрядностью 1, 2, 4 или 8 байт с помощью одной команды. Такая обработка обеспечивается введением дополнительного блока MMX (Milti-Media Extension - Мультимедийное Расширение). Название блока отражает его направленность на обработку видео- и аудиоданных, когда одновременное выполнение одной операции над несколькими операндами позволяет существенно повысить скорость обработки изображений и звуковых сигналов. Начиная с модели Pentium III, в процессоры вводится блок SSE (Streaming SIMD Extension - Потоковое SIMD-расширение) для групповой обработки чисел с “плавающей точкой”.

Рис. 1. Эволюция архитектуры IA-32

Таким образом, если первые модели процессоров Pentium выполняли только пооперандную обработку данных по принципу “Одна команда – Одни данные” (SISD - Single Instruction – Single Data ), то, начиная с процессора Pentium MMX, реализуется также их групповая обработка по принципу “Одна команда – Много данных” (SIMD - Single Instruction – Multiple Data ).

Соответственно, расширяется и набор регистров процессора, используемых для промежуточного хранения данных (рис. 2). Кроме 32-разрядных регистров для хранения целочисленных операндов, процессоры Pentium содержат 80-разрядные регистры, которые обслуживают блоки FPU и MMX. При работе FPU регистры ST0-ST7 образуют кольцевой стек, в котором хранятся числа с “плавающей точкой”, представленные в формате с расширенной точностью (80 разрядов). При реализации MMX-операций они используются как 64-разрядные регистры MM0-MM7, где могут храниться несколько операндов (8 8-разрядных, 4 16-разрядных, 2 32-разрядных или один 64-разрядный), над которыми одновременно выполняется поступившая в процессор команда (арифметическая, логическая, сдвиг и ряд других).

Рис. 2. Регистры хранения данных в процессорах Pentium

Блок SSE-2, введённый в состав процессора Pentium 4, значительно расширяет возможности обработки нескольких операндов по принципу SIMD, по сравнению с блоком SSE в модели Pentium III. Этот блок реализует 144 новые команды, обеспечивающих одновременное выполнение операций над несколькими операндами, которые раcполагаются в памяти и в 128-разрядных регистрах XMM0-XMM7. В регистрах могут храниться и одновременно обрабатываться 2 числа с “плавающей точкой” в формате двойной точности (64 разряда) или 4 числа в формате одинарной точности (32 разряда). Этот блок может также одновременно обрабатывать целочисленные операнды: 16 8-разрядных, 8 16-разрядных, 4 32-разрядных или 2 64-разрядных. В результате производительность процессора Pentium 4 при выполнении таких операций оказывается вдвое выше, чем Pentium III.

Операции SSE-2 позволяют существенно повысить эффективность процессора при реализации трёхмерной графики и Интернет-приложений, обеспечении сжатия и кодирования аудио- и видеоданных и в ряде других применений.

Введение большой группы команд SSE-2 является основной особенностью реализованного в Pentium 4 варианта архитектуры IA-32. Что касается базового набора команд и используемых способов адресации операндов, то они практически полностью совпадают с набором команд и способов адресации в предыдущих моделях Pentium. Процессор обеспечивает реальный и защищённый режимы работы, реализует сегментную и страничную организации памяти. Таким образом пользователь имеет дело с хорошо знакомым набором регистров и способов адресации, может работать с базовой системой команд и известными вариантами реализации прерываний и исключений, которые характерны для всех моделей семейства Pentium .

Микроархитектура процессоров Pentium 4

Основные особенности процессора Pentium 4 связаны с его микроархитектурой. Микроархитектура процессора определяет реализацию его внутренней структуры, принципы выполнения поступающих команд, способы размещения и обработки данных. Как анонсировала компания Intel, новая микроархитектура процессора Pentium 4, получившая название NetBurst (пакетно-сетевая), ориентирована на эффективную работу с Интернет-приложениями. Необходимо отметить, что в микроархитектуре NetBurst реализованы многие принципы, использованные в предыдущей модели Pentium III (микроархитектура P6 ). Характерными чертами этой микроархитектуры являются:

  • гарвардская структура с разделением потоков команд и данных;
  • суперскалярная архитектура, обеспечивающая одновременное выполнение нескольких команд в параллельно работающих исполнительных устройствах;
  • динамическое изменение последовательности команд (выполнение команд с опережением - спекулятивное выполнение);
  • конвейерное исполнение команд;
  • предсказание направления ветвлений.

Практическая реализация данных принципов в структуре процессора Pentium 4 имеет ряд существенных особенностей (рис. 3).

Рис. 3. Общая структура Pentium 4

Гарвардская внутренняя структура реализуется путём разделения потоков команд и данных, поступающих от системной шины через блок внешнего интерфейса и размещённую на кристалле процессора общую кэш-память 2-го уровня (L2) ёмкостью 256 Кбайт. Такое размещение позволяет сократить время выборки команд и данных по сравнению с Pentuim III, где эта кэш-память располагается на отдельном кристалле, смонтированном в общем корпусе (картридже) с процессором.

Блок внешнего интерфейса реализует обмен пpоцессоpа с системной шиной, к которой подключается память, контроллеры ввода/вывода и другие активные устройства системы. Обмен по системной шине осуществляется с помощью 64-разрядной двунаправленной шины данных, 41-разрядной шины адреса (33 адресных линии А35-3 и 8 линий выбора байтов BE7-0#), обеспечивающей адресацию до 64 Гбайт внешней памяти.

Дешифратор команд работает вместе с памятью микропрограмм, формируя последовательность микрокоманд, обеспечивающих выполнение поступивших команд. Декодированные команды загружаются в кэш-память микрокоманд, откуда они выбираются для исполнения. Кэш-память может хранить до 12000 микрокоманд. После её заполнения практически любая команда будет храниться в ней в декодированом виде. Поэтому при поступлении очередной команды блок трассировки выбирает из этой кэш-памяти необходимые микрокоманды, обеспечивающие её выполнение. Если в потоке команд оказывается команда условного перехода (ветвления программы), то включается механизм предсказания ветвления, который формирует адрес следующей выбираемой команды до того, как будет определено условие выполнения перехода.

После формирования потоков микрокоманд производится выделение регистров, необходимых для выполнения декодированных команд. Эта процедура реализуется блоком распределения регистров, который выделяет для каждого указанного в команде логического регистра (регистра целочисленных операндов EAX, ECX и других, регистра операндов с плавающей точкой ST0-ST7 или регистра блоков MMX, SSE, рис. 2) один из 128 физических регистров, входящих в состав блоков регистров замещения (БРЗ).

Эта процедура позволяет выполнять команды, использующие одни и те же логические регистры, одновременно или с изменением их последовательности.

Выбранные микрокоманды размещаются в очереди микрокоманд. В ней содержатся микрокоманды, реализующие выполнение 126 поступивших и декодированных команд, которые затем направляются в исполнительные устройства по мере готовности операндов. Отметим, что в процессорах Pentium III в очереди находятся микрокоманды для 40 поступивших команд. Значительное увеличение числа команд, стоящих в очереди, позволяет более эффективно организовать поток их исполнения, изменяя последовательность выполнения команд и выделяя команды, которые могут выполняться параллельно. Эти функции реализует блок распределения микрокоманд. Он выбирает микрокоманды из очереди не в порядке их поступления, а по мере готовности соответствующих операндов и исполнительных устройств. В результате команды, поступившие позже, могут быть выполнены до ранее выбранных команд. При этом реализуется одновременное выполнение нескольких микрокоманд (команд) в параллельно работающих исполнительных устройствах. Таким образом естественный порядок следования команд нарушается, чтобы обеспечить более полную загрузку параллельно включенных исполнительных устройств и повысить производительность процессора.

Суперскалярная архитектура реализуется путём организации исполнительного ядра процессора в виде ряда параллельно работающих блоков. Арифметико-логические блоки ALU производят обработку целочисленных операндов, которые поступают из заданных регистров БРЗ. В эти же регистры заносится и результат операции. При этом проверяются также условия ветвления для команд условных переходов и выдаются сигналы перезагрузки конвейера команд в случае неправильно предсказанного ветвления. Исполнительное ядро работает с повышенной скоростью выполнения операций. Например, микрокоманда сложения целочисленных операндов при тактовой частоте процессора 1,5 МГц выполняется всего за 0,36 нс.

Адреса операндов, выбираемых из памяти, вычисляются блоком формирования адреса (БФА), который реализует интерфейс с кэш-памятью данных 1-го уровня (L1) ёмкостью 8 Кбайт. В соответствии с заданными в декодированных командах способами адресации формируются 48 адресов для загрузки операндов из памяти в регистр БРЗ и 24 адреса для записи из регистра в память (в Pentium III формируются 16 адресов для загрузки регистров и 12 адресов для записи в память). При этом БФА формирует адреса операндов для команд, которые ещё не поступили на выполнение. При обращении к памяти БФА одновременно выдаёт адреса двух операндов: один для загрузки операнда в заданный регистр БРЗ, второй - для пересылки результата из БРЗ в память. Таким образом реализуется процедура предварительного чтения данных для последующей их обработки в исполнительных блоках, которая называется спекулятивной выборкой.

Аналогичным образом организуется параллельная работа блоков SSE, FPU, MMX, которые используют отдельный набор регистров и блок формирования адресов операндов.

При выборке операнда из памяти производится обращение к кэш-памяти данных (L1), которая имеет отдельные порты для чтения и записи. За один такт производится выборка операндов для двух команд. Время обращения к этой кэш-памяти составляет 1,42 нс при тактовой частоте 1,5 ГГц, что в 2,1 раза меньше, чем при обращении к кэш-памяти данных в процессоре Pentium III, работающем на частоте 1,0 ГГц.

При формировании адресов обеспечивается обращение к заданному сегменту памяти. Каждый сегмент может делиться на страницы, размещаемые в различных местах адресного пространства. Блоки трансляции адреса обеспечивают формирование физических адресов команд и данных при использовании страничной организации памяти. Для сокращения времени трансляции используется внутренняя буферная память, которая хранит базовые адреса наиболее часто используемых страниц.

В Pentuim 4 используется гиперконвейерная технология выполнения команд, при которой число ступеней конвейера достигает 20 (в Pentium - 5 ступеней, в Pentium III - 11). Таким образом одновременно в процессе выполнения может находиться до 20 команд, находящихся на разных стадиях (ступенях) их реализации.

Эффективность конвейера резко снижается из-за необходимости его перезагрузки при выполнении условных ветвлений, когда требуется произвести очистку всех предыдущих ступеней и выбрать команду из другой ветви программы. Чтобы сократить потери времени, связанные с перезагрузкой конвейера, используется блок предсказания ветвлений. Его основной частью является ассоциативная память, называемая буфером адресов ветвлений (BTB - Branch Target Buffer), в которой хранятся 4092 адреса ранее выполненных переходов. Отметим, что в BTB процессора Pentium III хранятся адреса только 512 переходов. Кроме того, BTB содержит биты, хранящие предысторию ветвления, которые указывают, выполнялся ли переход при предыдущих выборках данной команды. При поступлении очередной команды условного перехода указанный в ней адрес сравнивается с содержимым BTB. Если этот адрес не содержится в BTB, то есть ранее не производились переходы по данному адресу, то предсказывается отсутствие ветвления. В этом случае продолжается выборка и декодирование команд, следующих за командой перехода. При совпадении указанного в команде адреса перехода с каким-либо из адресов, хранящихся в BTB, производится анализ предыстории. В процессе анализа определяется чаще всего реализуемое направление ветвления, а также выявляются чередующиеся переходы. Если предсказывается выполнение ветвления, то выбирается и загружается в конвейер команда, размещённая по предсказанному адресу. Усовершенствованный блок предсказания ветвления, используемый в Pentuim 4, обеспечивает 90-% вероятность правильного предсказания. Таким образом резко уменьшается число перезагрузок конвейера при неправильном предсказании ветвления.

Реализация микроархитектуры

Реализованное в Pentium 4 значительное изменение микроархитектуры и повышение производительности потребовали введения дополнительных аппаратных средств. На кристалле процессора располагаются 42 млн. транзисторов (Pentium III содержал 8,5 млн. транзисторов без учёта кэш-памяти 2-го уровня, размещённой на отдельном кристалле). В настоящее время для изготовления Pentium 4 используется КМОП-технология с разрешающей способностью 0,18 мкм. Выпускаемые модели Pentium 4 имеют максимальные тактовые частоты 1,4 и 1,5 ГГц и размещаются в 423-выводных корпусах типа PPGA (Plastic Pin Grid Array). В 2001 году компания Intel планирует переход к 0,13-мкм технологии изготовления с использованием 6-слойной системы медных соединений. При этом будет обеспечено повышение тактовой частоты процессоров Pentium 4 до 2 ГГц и выше.

Архитектура систем на базе Pentium 4

Практическая реализация потенциальных возможностей процессора Pentium 4 обеспечивается при использовании набора специализированных микросхем, необходимых для построения на его основе цифровых систем различного назначения. Для реализации систем на базе Pentium 4 компания Intel выпускает набор микросхем Chipset 850, в который входят:

  • контроллер-концентратор памяти MCH (Memory Controller Hub) типа Intel 82850;
  • контроллер-концентратор для устройств ввода/вывода ICH2 (I/O Controller Hub) типа Intel 82801BA;
  • контроллер микрокода FWH (FirmWare Hub) типа Intel 82802AB.

Типовая архитектура систем, реализованных на базе процессора Pentium 4 с использованием набора Chipset 850, показана на рис. 4. Основной особенностью этой архитектуры является использование новой системной шины FSB, обеспечивающей обмен со скоростью 3,2 Гбайт/c, что соответствует частоте передачи данных 400 МГц. Такая скорость реализуется путём применения нового типа сверхбыстродействующей двухканальной памяти RDRAM и контроллера-концентратора MCH, обеспечивающего 4 канала обмена с памятью этого типа.

Рис. 4. Типовая архитектура систем на базе Pentium 4

Контроллер MCH выполняет обмен с оперативной памятью типа Direct RAMBUS ёмкостью от 128 Мбайт (минимально допустимый объём) до 2 Гбайт с помощью сдвоенных каналов. Память реализуется на основе микросхем быстродействующей двухканальной RDRAM-памяти типа PC800 или PC600, выпускаемых компанией RAMBUS. Таким образом общий доступ к оперативной памяти осуществляется с использованием четырёх каналов обмена. При тактовой частоте канала 100 МГц обеспечивается общая частота обмена, эквивалентная 400 МГц, что в 3 раза выше, чем для наиболее быстродействующих современных системных плат, работающих на частоте 133 МГц.

При использовании в системах микросхем памяти типа RDRAM могут возникнуть проблемы, которые связаны с их высокой стоимостью и определёнными сложностями их поставки. Поэтому в настоящее время разрабатываются варианты применения других типов быстродействующих микросхем динамической памяти, выпускаемых компаниями NEC, Toshiba, Samsung, Hyndai, Infineon.

К контроллеру MCH подключается также универсальный разъём AGP4X, используемый для связи с графическим адаптером при скорости передачи данных более 1 Гбайт/с.

Контроллер ICH2 служит для подключения различных внешних устройств с использованием интерфейса ULTRA ATA/66/100. Этот интерфейс реализует обмен с жёстким диском со скоростью 66 или 100 Мбайт/c. ICH2 также обеспечивает прямой доступ внешних устройств к памяти со скоростью 33 Мбайт/с при помощи интерфейса ULTRA DMA/33. Контроллер служит для подключения последовательных портов с шиной USB, связи с локальной сетью Ethernet и параллельного обмена по шине PCI. Обеспечивается возможность реализации каналов для передачи аудиоданных.

Для создания систем на базе Pentim 4 компания Intel выпускает системные (“материнские”) платы типа D850GB. На плате размером 30,5ґ24,4 см2 монтируется микропроцессор и другие необходимые микросхемы, имеются 4 разъёма для включения RIMM-модулей памяти RDRAM. На плате размещаются также флэш-память ёмкостью 4 Мбит, хранящая систему ввода/вывода BIOS, 5 слотов шины PCI и 2 контроллера последовательной шины USB, обслуживающих 4 USB-порта. Кроме того, имеются порты для подключения клавиатуры и мыши, 2 интерфейса для подключения жёстких дисков и один для гибких дисков, один последовательный (COM) и один параллельный (LPT) порты.

Ведущие производители персональных компьютеров: Compaq, Dell, IBM, Hewlett-Packard, Acer, Siemens, Fujitsu, Toshiba, NEC и ряд других - начали поставку новых моделей компьютеров на основе процессоров Pentium 4. Предполагается, что средняя стоимость этих компьютеров в конце I полугодия 2001 года снизится до уровня 1600 долларов.

Области применения и реализуемое повышение производительности

Основной областью применения процессора Pentium 4 являются высокопроизводительные настольные персональные компьютеры (desktop PC). Процессор Pentium 4 не поддерживает реализацию мультипроцессорных систем, которая обеспечивается процессорами Pentium III Xeon. В 2001 году компания Intel планирует начать производство процессора Foster, который представляет собой модификацию Pentium 4, предназначенную для работы в мультипроцессорных системах. Процессор Foster будет использоваться в серверах и рабочих станциях.

Процессоры, которые будут выпускаться компанией Intel в 2001 году, ориентированы на области применения, перечисленные в табл. 2.

Таблица 2. Области применения перспективных процессоров фирмы INTEL

Новые 64-разрядные процессоры Itanium, архитектура которых принципиально отличается от архитектуры IA-32, используемой в семействе Pentium, будут применяться в наиболее высокопроизводительных серверах и рабочих станциях. В сфере персональных компьютеров процессоры Pentium 4 будут постепенно вытеснять Pentium III. Процессор Foster будет заменять Pentium III Xeon в серверах и рабочих станциях средней производительности. Процессоры Celeron сохранят свои доминирующие позиции в персональных компьютерах для массового потребителя.

Основным преимуществом процессора Pentium 4, по сравнению с предыдущей моделью Pentium III, является существенное повышение производительности при реализации различных приложений. В табл. 3 даны результаты тестовых испытаний производительности компьютеров на основе Pentium 4 (тактовая частота 1,5 ГГц, частота обмена по системной шине 400 МГц) и Pentium III (тактовая частота 1,0 ГГц, частота обмена по системной шине 133 МГц). Приведённые данные содержались в материалах, представленных компанией Intel на презентации процессора Pentium 4 в Москве, в ноябре 2000 года. В табл. 3 указаны программы, с помощью которых производилась сравнительная оценка производительности для различных приложений.

Таблица 3. Результаты сравнительных испытаний процессоров Pentium III и Pentium 4

Вид приложения Повышение производительности
Обработка целых чисел (SPECint2000) 23%
Обработка чисел с плавающей запятой (SPECfp2000) 79%
Кодирование аудиосигналов (eJay МРЗ Plus 1.3) 25%
Работа в сети Интернет (WebMark2001) 23%
Распознавание речи (Dragon Naturally Speaking, preffered 4.0) 27%
Кодирование видеопотоков
(Media Encjder 7.0)
(Video 2000 MPEG-2)

45%
26%
Обработка видеоматериалов
(ULead VideoStudio 4.0)
(Adobe Premier 5.1 c LSX-MPEG)

45%
26%
Трехмерные игры
(Quake III Arena Demo2)
44%
Трехмерная графика (3D WinBench 2000) 32%

Приведённые данные показывают, что наибольший выигрыш обеспечивается при использовании Pentium 4 для обработки видеоданных, реализации трёхмерной графики и выполнении операций над числами с “плавающей точкой”.

Литература

  1. Шагурин И.И. Pentium 4 - новая ступень развития микропроцессорной техники // Chip News. - 2000. - № 9. - С. 18–20 .
  2. Шагурин И.И., Бердышев Е.М. Процессоры семейства P6 - Pentium II, Pentium III, Celeron и другие. Архитектура, программирование, интерфейс. - М.: Горячая линия – Телеком. - 2000. - 248 с.

Данная статья предназначенна и для тех, у кого процессор разогнался нормально, и для тех, кто только собирается купить и разогнать процессор. В ней рассказывается, как открыть картридж процессора Pentium II без видимых повреждений, и как можно применить это умение.

Чтобы бестолку не перевскрывать гигантское кол-во процессоров, разберемся, какие могут быть причины, побуждающие к совершению этого акта:

  • Вы разгоняете процессор до "требуемой Вами величины" с повышением напряжения или без такового (последнее естественно лучше). В этом случае рекомендуется сделать картридж открытым для лучшего охлаждения.
  • Ваш процессор разогнался, и вроде как бы стабилен, но есть опасения (и не напрасные) по поводу перегрева и стабильности работы на повышенной частоте (Money back обычно дают на 2-3 дня, а процессор может сбоить и 1 раз в неделю из-за перегрева или плохого кэша L2). В этом случае открыв картридж, вы сможете убедиться на какой частоте может работать Ваш процессор теоретически.
  • Вам заранее не очень жалко картридж, так как Вы можете сильно его поцарапать при вскрытии (при определенном навыке это пройдет). При этом можно будет выбирать наиболее гонябельный процессор, вскрывая, и смотря - насколько быстродействующий кэш стоит внути (в идеале - время доступа кэш-памяти второго уровня равно 4.4 нс).
А также, необходимо иметь в виду что:

Автор и редакция не несут никакой ответственности за любой возможный ущерб в случае следования приведенным в данном материале рекомендациям. Все ваши действия на основании данного материала Вы осуществляете на свой страх и риск. Заметим, что внесение в процессор модификаций, описанных в данном материале, автоматически лишает вас каких-либо гарантийных обязательств со стороны продавца и производителя. Все действия по разгону и разборке картриджа вы проводите на свой страх и риск, и принимаете на себя всю ответственность за возможные поломки и сбои.

Компоненты картриджа

Картридж процессора состоит из следующих деталей:

  1. Радиатор с вентилятором (у процессоров в коробке он прикручен 4-мя пустотелыми саморезами - откручивать не надо!)
  2. Пластиковый кожух (тот, на котором голограмма)
  3. Металлическая пластина теплоотвода (так называемый радиатор первого уровня). К ней крепится радиатор c вентилятором.
  4. Процессорная плата с установленной микросхемой TAG с одной стороны и, с другой стороны, собственно процессором (или ядром), и кэш-памятью L2.
  5. Крепление пластины теплоотвода к процессорной плате - 2 упругих стальных пластинки с фиксаторами-защелками.
  6. Пластиковая заглушка (только у P2 233-333 Mhz).

Вскрытие

Первым делом необходимо снять кожух. Кожух на картридже держится на четырех стойках (на рисунке ниже они помечены рыжим цветом). Второй рисунок (вид кожуха сзади) дан для наглядного представления о том, где впечатаны стойки в пластик кожуха.

Вентилятор с радиатора на рисунке снят для наглядности, при разборке его снимать не нужно! Стойки, держащие кожух, имеют на окончании конический срез и при обратном подсоединении (сборке) вщелкиваются в кожух практически намертво, как и было до разборки.

Если Вы не хотите, чтобы на картридже остались следы вскрытия, пользуйтесь только двумя последними рисунками. Первый рисунок также эффективен, но остаются очень явные следы на пластике и пластине теплоотвода. Грамотное использование наработанной технологии позволяет вскрыть процессор вообще без следов и в случае обнаружения не очень хорошей кэш-памяти (5.5 нс и более) даже поменять процессор или вернуть назад.

Для облегчения вскрытия рекомендую начать с освобождения левой нижней стойки, (если смотреть на процессор со стороны радиатора, контактами картриджа вниз). Эта стойка помечена на первом рисунке красной звездочкой- она наиболее слабо закреплена. Далее - по часовой стрелке: левая верхняя, правая верхняя, и правая нижняя стойки. Последняя стойка держит кожух сильнее всего, и, возможно, даже придется применить грубую силу.

Поздравляю Вас, если Вы вскрыли картридж и держите в руках плату прим. следующего внешнего вида:

Вы видите микросхему TAG и, если это Klamath, еще 2 микросхемы кэш-памяти L2 по бокам. В случае же Deschutes, как и у нас на картинке микросхема всего одна. TAG с маркировкой 82459AD - самый лучший, он совершенно не греется, и работоспособен даже при частотах в 558-560 Мгц.

Защелки, помеченные красным цветом - Ваш следующий шаг. Чтобы освободить их от стальных упругих пластинок надо быть осторожным так как Вы реально можете повредить плату процессора.

Можно взять тонкий пинцет, и аккуратно отжать защелки, но лично у меня это не получилось, и я придумал очень простой вариант, позволяющий снять крепление за 20 секунд. (Тем, кому мой способ не по душе - придумайте свой!) Для него потребуется все та-же отвертка, шило и клочок бумаги.

Прокладываем свернутую бумагу между крепежем и платой, она будет оберегать плату от повреждений. Засовываем с небольшим усилием отвертку как клин между бумагой и крепежем, и, используя её, как рычаг, аккуратно приподнимаем шилом фиксаторы. После того, как фиксаторы будут скользить на оси стойки, уже не попадая в пазы, надо очень осторожно, пользуясь носом отвертки как клином и подложив что-нибудь под плату, например эту же бумагу, снять упругую пластинку крепежа с первой стойки. Она очень легко слезает, и отщелкнется от стойки. Вторую половину стальной пластинки крепежа после этого снять уже совсем легко, помогая шилом.

После того, как Вы сняли все фиксаторы аккуратно отделите процессорную плату от пластины охлаждения. У Pentium II 233-333 снимите пластмассовую заглушку - её можно выкинуть, она только ухудшает охлажнение процессора, загораживая воздушные потоки. Естественно, в случае продажи или замены процессора эту заглушку придется подсоединить обратно. Но эта операция очень проста.

После разборки у Вас появится возможность посмотреть на процессорную плату и с другой стороны. Здесь Вы увидете собственно ядро процессора и две микросхемы кэш-памяти вторго уровня

Определение стабильных частот работы

Обратим свой взор на кэш-память. Выглядит она примерно следующим образом:

Смысл всех проделанных операций во многом состоит в том, что по взгляду на кэш-память можно сразу определить примерную (с вероятностю 97%) частоту устойчивой работы процессора (для разгона). Ниже приводится таблица, позволяющая по времени доступа, указанном на кэше, узнать максимально возможную частоту работы Вашего процессора

Время доступа, нс Маркировка на модуле Гарантированная частота работы процессора (100%), МГц Вероятная частота работы процессора (85%), МГц Мало вероятная частота работы процессора (35%), МГц Процессоры с кэш-памятью этого типа, МГц
5.5 -55 375 400 450 266, 300, 333
5.0 -50,-5 450 504 560 266, 300, 333
4.5 -45,-225 450 504 560 266, 300, 333, 350, 400
4.4 -44 450 504, 560 560 266, 300, 333, 350, 400

Если у Вас стоит хороший TAG и L2-кэш (например, AD и 4.4 нс), но компьютер все равно глючит при разгоне, это значит, что проблемы вызывает сам кристалл процессора. Чтобы удостоверится в этом, попробуйте выключить в Setup BIOS кэш L2, если ситуация не меняется, то это точно кристалл. В этой ситуации уже ничем не поможешь - только вернуть по манибеку или поменять. Естественно, данный вывод подразумевает отсутствие проблем с другим оборудованием в системе. То есть, материнская плата хорошо держит данную частоту и стоит хорошая PC-100 память для частот шины 100 и 112 МГц.

Доработка картриджа для лучшего теплоотвода

Пластиковый кожух назад можно не ставить вообще, его отсутствие очень сильно улучшает теплоотвод, так как пластина охлаждения, являясь радиатором первого уровня, начинает обдуватся воздухом с обеих сторон, а не только со стороны вентилятора.

Для охлаждения микросхем кэша между пластиной и кэш-памятью я рекомендую поставить жирные кляксы густой термопасты. Они будут касатся кэш-памяти и отводить тепло на себя и на пластину. Для лучшего контакта над микросхемами кэша можно также сделать металлические вставочки, или монетки, но их надо закреплять воизбежание короткого замыкания.

Данную операцию надо проводить только с процессорами Deschutes, так как к процессоров с ядром Klamath эффект от операции будет отрицательным - пластина теплоотвода будет наоборот прогревать кэш-память.

Сборка

Далее, следует подсоединить пластину охлаждения назад к плате, убедиться в хорошем контакте кэш-памяти L2 с пластиной охлаждения (если Вы занимались доработкой), вщелкнуть фиксаторы 2-х металлических пластинок крепежа назад, и вставить процессор в слот без крышки кожуха "а-ля Celeron". В доработанном состоянии процессор работает прекрасно, а греется на 40% меньше. В случае полной сборки, например для обмена процессора по гарантии:), вщелкнуть кожух назад.

Тесты и разгон проводились на компонентах:

  • Системная плата - ABIT BH-6
  • Процессор - Intel Pentium II 300, разогнанный до 504 Мгц (112х[email protected])
  • Память - HITACHI&NPNX PC-100 CAS 2
  • HDD - IBM DTTA 371010 10.1 Gb 7200 rpm
  • Video - Diamond Viper 550 (Riva TNT)
  • Программа охлаждения процессора CpuIdle

ВведениеНаши читатели нередко задают нам один и тот же вопрос: сколько вычислительных ядер должен иметь современный процессор? К сожалению, однозначно ответить на него мы не можем, целесообразность применения многоядерных процессоров в том или ином случае сильно варьируется и зависит в первую очередь от того рода задач, с которым собирается иметь дело пользователь. Как показывают тесты, четырёхъядерные процессоры оказываются весьма эффективны при рендеринге или кодировании видео, но большинство игр, офисные приложения или даже графические редакторы не могут полностью загрузить работой четыре вычислительных ядра одновременно. Более того, существует немалая доля приложений, создатели которых и вовсе не считают нужным распараллеливать вычислительную нагрузку. Например, некоторые звуковые кодеки, ряд игр, интернет-браузеры и даже Adobe Flash Player используют лишь одно процессорное ядро. Именно поэтому правильный выбор процессора во многих случаях оказывается не столь уж и простой задачей, особенно если принять во внимание тот факт, что в среднем ценовом сегменте производители процессоров одновременно предлагают модели с различным количеством ядер: двумя, тремя и четырьмя.

Тем не менее, именно двухъядерные процессоры следует сегодня считать наиболее универсальным вариантом. Работа для двух вычислительных ядер найдётся практически в любом компьютере: если даже активное приложение использует лишь однопоточные алгоритмы, второе ядро, свободное от нагрузки, окажется как нельзя кстати для нужд операционной системы, которая благодаря ему сможет обеспечить более быструю реакцию на действия пользователя. В пользу двухъядерных процессоров говорит и статистика: почти половина современных компьютеров оснащена ими. И хотя доля таких ПК в последнее время демонстрирует тенденцию к сокращению под давлением понижения цен на процессоры с большим числом ядер, число компьютеров с двухъядерными процессорами почти вдвое больше, чем с процессорами с четырьмя ядрами.

Иными словами, именно двухъядерные процессоры продолжают оставаться на пике внимания современных пользователей. Говоря же в этом ключе о конкретных предложениях производителей, следует заметить, что более выгодно смотрится линейка двухъядерных продуктов компании Intel. Микропроцессорный гигант предлагает гораздо более широкий спектр решений, включающий целых три класса двухъядерных процессоров разных ценовых диапазонов: Celeron, Pentium и Core 2 Duo. Компания AMD пока может ответить на это лишь двухъядерными Sempron и Athlon X2, которые с точки зрения своих потребительских качеств никак не могут быть противопоставлены линейке Core 2 Duo.

Таким образом, вопрос о выборе оптимального двухъядерного процессора на альтернативной основе оказывается уместен только в том случае, если речь идёт о предложениях дешевле трёх тысяч рублей . Именно такие недорогие двухъядерные процессоры семейств Athlon X2 и Pentium в сегодняшних условиях оказываются востребованы весьма значительной группой пользователей, приобретающих или собирающих системные блоки общей стоимостью в пределах 15 тыс. рублей. Этой категории покупателей мы и адресуем нашу сегодняшнюю статью, в которой речь пойдёт о противостоянии процессорных семейств AMD Athlon X2 и Intel Pentium Dual-Core.

AMD Athlon X2

В рядах двухъядерных процессоров, предлагаемых компаний AMD, не так давно произошли значительные изменения. Так, этот производитель сместил акценты на Athlon X2 серии 7000 – процессоры, в основе которых лежит ядро Kuma. В результате, в дополнение к Athlon X2 7750, на рынке теперь доступна и более быстрая модель, процессор Athlon X2 7850, частота которого достигает 2,8 ГГц. Вместе с этим, основная масса процессоров Athlon X2 с ядрами Windsor и Brisbane отправлена на свалку истории. Причины этих изменений весьма прозаичны: производить ядра специально для дешёвых двухъядерных моделей становится накладно, поэтому большее распространение находят процессоры, в основе которых используются бракованные четырехъядерные полупроводниковые заготовки.

Таким образом, в ассортименте AMD число двухъядерных процессоров с микроархитектурой K10 (Stars), обладающих, среди прочего, и кэш-памятью третьего уровня объёмом 2 Мбайта, неуклонно увеличивается. При этом следует иметь в виду, что Athlon X2 серии 7000 представляют собой производную от процессоров Phenom X4 ещё первого поколения, с ядром Agena, для выпуска которых используется старый 65-нм технологический процесс. Это означает, что Athlon X2 серии 7000 работают только в Socket AM2/AM2+ материнских платах и поддерживают лишь DDR2 память. Впрочем, так как предназначены они для использования в недорогих компьютерах, такие ограничения вполне разумны.

Основные характеристики процессоров Athlon X2 с микроархитектурой K10 (Stars) можно почерпнуть, например, из приведённого ниже скриншота диагностической утилиты CPU-Z.


Никаких неожиданностей здесь нет: старшая модель Athlon X2 7850 оказалась лишь на 100 МГц быстрее рассмотренной нами ранее предшественницы и работает на частоте 2,8 ГГц. Всё остальное так и осталось по-старому. Поэтому, от Athlon X2 серии 7000 ждать чудес явно не следует: производительность этой линейки отличается от быстродействия Athlon X2 с микроархитектурой K8 незначительно, разгоняются такие процессоры достаточно плохо, их тепловыделение сравнительно высоко. Но, тем не менее, выбирать не приходится, и тем, кто решится связаться с двухъядерными процессорами AMD сегодня, придётся мириться со всеми этими недостатками, по крайней мере, до тех пор, пока компания не предложит двухъядерные процессоры, использующие более новые 45-нм ядра.

Intel Pentium

В отличие от AMD, компания Intel давно внедрила 45-нм технологический процесс при производстве практически всех своих моделей, за исключением разве только совсем бюджетных процессоров Celeron. Что же касается интересующих нас в первую очередь Pentium, то все представители этой линейки с процессорными номерами E5000 основываются на 45-нм ядре Wolfdale-2M, получающемся при отключении части кэш-памяти в полноценных ядрах Wolfdale, которые используются в процессорах серии Core 2 Duo.

В итоге двухъядерные процессоры, противостоящие (по крайней мере, с точки зрения цены) семейству Athlon X2, обладают кэш-памятью второго уровня объёмом 2 Мбайта, что в три раза меньше кэш-памяти «полноценных» Wolfdale. Но это далеко не единственная характеристика, претерпевшая ухудшение при получении из Core 2 Duo в 3-4 раза более дешёвого процессора. Pentium серии E5000 используют медленную 800-мегагерцовую FSB и имеют более низкие, чем Core 2 Duo, тактовые частоты.

В результате, основные характеристики процессора Pentium E5400, венчающего модельный ряд E5000, отображаются на скриншоте диагностической утилиты CPU-Z следующим образом:


Говоря о семействе процессоров Pentium, хочется подчеркнуть ещё две их особенности, о которых частенько забывают покупатели. Во-первых, в отличие от всех других LGA775-процессоров с 45-нм ядрами поколения Core, Pentium Dual-Core не имеют поддержки набора команд SSE4.1. Напомним, что этот набор инструкций включает в себя 47 команд и используется некоторыми современными видеокодеками. Впрочем, особо расстраиваться по этому поводу явно не следует - как минимум из-за того, что семейство Athlon X2 также SSE4.1 не поддерживает.

Вторым же, более серьёзным недостатком процессоров Pentium является отсутствие поддержки технологии виртуализации. И если раньше этот факт мало волновал большинство пользователей, то теперь ситуация вполне может поменяться на противоположную. Дело в том, что технология виртуализации используется режимом эмуляции Windows XP в грядущей операционной системе Windows 7, предназначенном для обеспечения работы приложений, по каким-либо причинам с Windows 7 несовместимых. Отсутствие же у процессора соответствующего свойства ставит крест на возможности запуска в будущей операционной системе виртуальной машины со стареющей, но, тем не менее, широко распространённой ОС. Впрочем, вряд ли несовместимых приложений будет много - как показывает практика, в основном это либо старые игры, либо какое-то узкоспециализированное и малораспространённое ПО.

Основные характеристики протестированных процессоров

Ставя перед собой цель сравнения актуальных двухъядерных процессоров стоимостью порядка 2-3 тысяч рублей, мы сосредоточили внимание на Athlon X2 7850 и 7750, а также семействе Pentium E5000. К сожалению, пока мы не смогли получить в нашу лабораторию новый процессор Pentium E6300, так что тесты этой модели временно откладываются. Зато в число соперников мы добавили старый процессор AMD, Athlon X2 6000, который, несмотря на свою принадлежность к микроархитектуре K8 и отсутствие в официальном прайс-листе AMD, всё ещё способен тряхнуть стариной и продемонстрировать уровень производительности, вполне укладывающийся в рамки, определяемые интересующей нас ценовой категорией. Итак, представляем вашему вниманию полный перечень протестированных моделей.



Надо заметить, что, хотя официальные цены ниже у AMD, на практике на момент подготовки статьи в нашем прайс-листе Pentium DC E5200 был на семьдесят рублей дешевле, нежели Athlon X2 7750.

Мы не стали добавлять в наше сравнение двухъядерные Intel Celeron, так как и с точки зрения потребительских характеристик, и с точки зрения цены они находятся на более низкой ступени процессорной иерархии.

Описание тестовой платформы

Для тестирования перечисленных в приведённой таблице продуктов были собраны две аналогичные платформы, предназначенные для Socket AM2 и LGA775 процессоров соответственно. В этих платформах использовались следующие компоненты:

Материнские платы:

ASUS P5Q Pro (LGA775, Intel P45 Express, DDR2 SDRAM);
Gigabyte MA790GP-DS4H (Socket AM2+, AMD 790GX + SB750, DDR2 SDRAM).


Оперативная память: GEIL GX24GB8500C5UDC (2 x 2Гбайт, DDR2-800 SDRAM, 5-5-5-15).
Графическая карта: ATI Radeon HD 4890.
Жёсткий диск: Western Digital WD1500AHFD.
Операционная система: Microsoft Windows Vista x64 SP1.
Драйверы:

Intel Chipset Software Installation Utility 9.1.0.1007;
ATI Catalyst 9.4 Display Driver.

Несмотря на то, что процессоры AMD Athlon X2 7850 и 7750 могут работать с DDR2-1067 памятью, их тестирование, также как и всех остальных участников, мы выполняли c DDR2-800 SDRAM. Такое решение обусловлено не столько желанием поместить все рассматриваемые процессоры в аналогичные условия, сколько экономической целесообразностью. Скорость памяти мало влияет на итоговое быстродействие системы, поэтому при сборке недорогих компьютеров разумнее использовать более дешёвую, а не более высокочастотную память.

Производительность

Общая производительность















Результаты, показываемые процессорами при измерении комплексной производительности в типичных наборах приложений, не преподносят никаких сюрпризов. В целом, процессоры располагаются на диаграммах сообразно их стоимости. Отметить разве только стоит превосходство Athlon X2 в тестовом сценарии «Productivity», что говорит о востребованности большого объёма кэш-памяти в типичных офисных приложениях, а также преимущество моделей с микроархитектурой Core при построении и обработке трёхмерных изображений.

Кстати, отдельного упоминания заслуживает ощутимое превосходство новых Athlon X2 с ядром Kuma над процессором старого поколения Athlon X2 6000. Этот факт может служить яркой иллюстрацией превосходства микроархитектуры K10 (Stars) над предшествующей ей микроархитектурой K8. Впрочем, величина этого превосходства явно недостаточна для того, чтобы предлагаемые AMD двухъядерные процессоры смогли бы конкурировать с семейством Core 2 Duo - они проигрывают по быстродействию даже старшим представителям модельного ряда Pentium.

Игровая производительность












Производительность в современных играх в первую очередь определяется мощностью графического ускорителя. А процессоры со стоимостью 2-3 тысячи рублей, как можно видеть по полученным результатам, вполне справляются с той нагрузкой, которая может возлагаться на них в игровых приложениях, и обеспечивают приемлемую скорость. Это значит, что для недорогих игровых систем процессоры Athlon X2 и Pentium подходят хорошо, а свободные деньги лучше направить на покупку более серьёзной видеокарты.

Впрочем, семейство Pentium в целом демонстрирует всё же чуть более высокие показатели, чем Athlon X2 серии 7000, которые, хотя это и выглядит странным, проигрывают выпущенному почти два с половиной года назад Athlon X2 6000.

Производительность при кодировании видео






В очередной раз мы убеждаемся в том, что кодек DivX лучше оптимизирован для процессоров с микроархитектурой Core. Зато при использовании набирающего популярность кодека x264 победа оказывается на стороне процессоров Athlon X2, являющихся носителями микроархитектуры K10 (Stars).

Прочие приложения



Скорость выполнения финального рендеринга в 3ds max оказывается значительно выше, если сердцем системы является процессор семейства Pentium. Очевидно, что микроархитектура Core, предполагающая обработку четырёх, а не трёх команд за такт, более приспособлена для тяжёлой вычислительной работы.



Такой же вывод можно сделать и при измерении скорости компьютерного моделирования процесса свёртывания белков, выполняемого клиентом популярной системы распределённых вычислений Folding@Home.



Не лучше для двухъядерных процессоров AMD обстоит дело и со скоростью работы в Adobe Photoshop. Athlon X2 поколения K10 (Stars) хоть и увеличили своё быстродействие по сравнению с предшественниками, для успешной конкуренции с процессорами Intel с микроархитектурой Core этого всё ещё недостаточно. Впрочем, откровением для наших читателей это не является: Photoshop, 3ds max и Folding@Home давно зарекомендовали себя как задачи, неблагоприятные для любых процессоров, предлагаемых компаний AMD.



Ещё одним таким приложением является Excel, счёт в котором выполняется процессорами Intel почти в два раза быстрее. Кстати, Excel относится и к тем приложениям, в которых новые Athlon X2 7850 и 7750 проигрывают в производительности и своим предшественникам с микроархитектурой K8.



Не порадуют приверженцев продукции компании AMD и результаты в WinRAR. При переходе к новой архитектуре архивация стала выполняться процессорами этого производителя медленнее. В результате, если ранее в тестах WinRAR процессоры Athlon X2 смотрелись значительно лучше конкурирующих предложений Intel, то теперь речь идёт лишь о мизерном преимуществе.

Энергопотребление

Процессоры Phenom, выпускавшиеся по 65-нм технологическому процессу, не могли похвастать хорошими показателями экономичности. По этому параметру они существенно проигрывали даже четырёхъядерным процессорам Intel, оснащённым 65-нм ядрами. Теперь же AMD предлагает нам сопоставить то же самое ядро старых Phenom, правда, усечённое до двухъядерного варианта, с современными 45-нм процессорами Intel, в основе которых лежит изначально двухъядерный полупроводниковый кристалл. Совершенно очевидно, что ничего хорошего из этого не получится, и исход сравнения энергопотребления Athlon X2 и Pentium предрешён. Тем не менее, мы решили всё-таки взглянуть на цифры, чтобы оценить «масштабы бедствия».

Приводимые ниже цифры представляют собой полное энергопотребления тестовых платформ в сборе (без монитора) «от розетки». Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.5.8. Кроме того, для правильной оценки энергопотребления в простое мы активировали все энергосберегающие технологии: C1E, Cool"n"Quiet и Enhanced Intel SpeedStep.



В состоянии покоя активируются все процессорные технологии энергосбережения, поэтому энергопотребление систем различается не так сильно. Тем не менее, превосходство процессоров, ядра которых производятся по более современному технологическому процессу, очевидно даже в этом случае.



Под нагрузкой же картина усугубляется. Соперничать по характеристике «производительность на ватт» с Pentium бесполезно, недаром эти процессоры так часто используются в качестве основы HTPC. Системы на базе Athlon X2 с 65-нм ядром проигрывают им более чем ощутимо, разница достигает десятков ватт, поэтому, если энергопотребление и тепловыделение системы для вас не безразличны, на двухъядерных процессорах AMD можно смело поставить крест.

Разгон

Фиаско, которое терпят процессоры Athlon X2 при сопоставлении их энергопотребления с энергопотреблением конкурирующих предложений, сопровождается и плачевными результатами разгона. Виной тому, естественно, всё то же старое 65-нм ядро Kuma, которое уже неоднократно подтверждало свою враждебность разгону.

В данном случае мы проверили разгонные возможности серии Athlon X2 7000, попытавшись достичь максимальной тактовой частоты в системе со старшим в модельном ряду процессором Athlon X2 7850. Разгон проводился на той же тестовой платформе, что и тесты производительности. В качестве системы охлаждения был использован воздушный кулер Scythe Mugen.

Впрочем, даже использование сравнительно мощного кулера и повышение напряжения питания процессора со штатных 1,3 до 1,475 В не позволило добиться стабильной работы на частоте выше, чем скромные 3,25 ГГц.


Поэтому тот факт, что процессоры Athlon X2 7850 и 7750 относятся к серии Black Edition и потому имеют незаблокированный множитель – утешение слабое. В реальности эти процессоры оказываются способны лишь на небольшое увеличение частоты при разгоне, не превышающее 20-25 %.

Другое дело Intel Pentium. Лежащее в основе этих моделей 45-нм ядро Wolfdale является одним из лучших вариантов в плане разгона на сегодняшний день. В результате, повышение напряжения питания с 1,25 до 1,45 В дало нам возможность без особых осложнений разогнать процессор Pentium E5400 до частоты 4,0 ГГц с использованием для отвода тепла того же Scythe Mugen.


Следует подчеркнуть, что невысокая частота FSB, используемая процессорами Pentium в номинальном режиме, играет на руку оверклокерам. Так как двухъядерные процессоры Intel лишены свободного множителя, орудовать при разгоне приходится исключительно частотой шины. Но даже в нашем случае, когда частота процессора в разгоне была увеличена почти на 50 %, частота FSB достигла лишь 297 МГц, что, вне всяких сомнений, под силу любым материнским платам, включая и недорогие продукты, основанные на «урезанных» наборах логики, например, Intel P43.

Таким образом, разгонять Pentium лишь немногим сложнее, чем процессоры Athlon X2, относящиеся к серии Black Edition. А вот результат их разгона оказывается куда весомее: на фоне семейства Pentium мы бы вообще не стали причислять Athlon X2 к процессорам, способным вызвать интерес у энтузиастов.

Выводы

Если тестирование производительности и способно оставить какие-то вопросы о том, какой из двухъядерных процессоров стоимостью в районе 2-3 тысяч рублей следует считать оптимальным выбором, то измерение энергопотребление и тесты на разгон отметают всякие сомнения. С сожалением мы вынуждены констатировать, что компания AMD сегодня предлагает неконкурентоспособные двухъядерные модели, уступающие процессорам Pentium практически по всем потребительским качествам.

Но даже если сосредоточиться только на быстродействии и закрыть глаза на всё остальное, выводы от этого вряд ли поменяются. Во многих приложениях Athlon X2 серии 7000 заметно уступают конкурентам, число же задач, где они демонстрируют лучшую, чем Pentium E5000, производительность, невелико. Именно поэтому предлагаемые сегодня компанией AMD двухъядерные процессоры способны заинтересовать хоть кого-то только лишь в одном случае – когда речь идёт об обновлении старой Socket AM2 системы. Собирать же новый компьютер, выбирая за основу Athlon X2, пусть даже с микроархитектурой K10 (Stars), совершенно иррационально.

Иными словами, ответ на вопрос, поставленный нами в начале этой статьи, совершенно однозначен: сегодня Intel предлагает лучшие двухъядерные процессоры, даже если они относятся к серии Pentium, во многом дискредитировавшей себя в эпоху господства микроархитектуры NetBurst. Ведь современные процессоры Pentium не имеют ничего общего со старыми Pentium 4 и Pentium D, они обладают той же микроархитектурой, что и Core 2 Duo, отличаясь от них лишь размером L2-кэша, частотой шины и тактовой частотой. В результате, современная серия Pentium Dual-Core выглядит весьма соблазнительно, предлагая отличное сочетание цены, производительности и энергопотребления. И плюс к тому, процессоры Pentium – это прекрасный плацдарм для оверклокерских экспериментов.

Но всё-таки на этом мы бы не стали ставить финальную точку в рассмотрении двухъядерных процессоров. Дело в том, что уже через две недели нас ожидает встреча с принципиально новыми двухъядерными моделями AMD, которые будут использовать в своей основе современные ядра, выпускаемые по 45-нм технологическому процессу. И эти процессоры, известные сегодня под кодовыми именами Callisto и Regor, очевидно, будут противопоставлены более дорогим двухъядерным процессорам Intel, чем Pentium. Хочется надеяться, что их соперничество с интеловскими конкурентами окажется более успешным. По крайней мере, определённые предпосылки к этому есть: перспективные процессоры не просто получат новые ядра, производимые с использованием более современного техпроцесса, но и смогут похвастать более высокими частотами, большим объёмом кэш-памяти и поддержкой DDR3 SDRAM.

Другие материалы по данной теме


Новый степпинг Intel Core i7: знакомимся с i7-975 XE
Intel Core 2 Duo под ударом: обзор процессора AMD Phenom II X3 720 Black Edition
Знакомимся с Socket AM3: обзор процессора AMD Phenom II X4 810

Этот процессор Intel представила в мае 1997 года. До своего официального появления он был известен под кодовым названием Klamath, и вокруг него в компьютерном мире ходило огромное количество слухов. pentium II, по существу, тот же процессор шестого поколения, что и pentium Pro, правда, в несколько улучшенном варианте. Кристалл процессора pentium II отображен на рис. 3.25.

Однако в физическом аспекте это действительно нечто новое. Процессор pentium II заключен в корпус с односторонним контактом (Single Edge Contact - SEC) и крупным Рис. 3.25. Процессор pentium II. Фотография публикуется с разрешения Intel Рис. 3.26. Плата процессора pentium II (внутри картриджа SEC). Фотография публикуется с разрешения Intel теплоотводным элементом. Устанавливается он на собственную небольшую плату, очень похожую на модуль памяти SIMM и содержащую кэш-память второго уровня (рис. 3.26); эта плата устанавливается в разъем типа Slot 1 на системной плате, который внешне очень похож на разъем адаптера. Рис. 3.27. Компоненты картриджа SECC Существует два типа картриджей процессоров, называемые SECC (Single Edge Contact Cartridge) и SECC2. Эти картриджи отображены на рис. 3.27 и 3.28 соответственно. Обратите внимание, что в картридже SECC2 меньше компонентов. В начале 1999 года Intel перешла на использование картриджей при производстве процессоров pentium П/Ш. Изготовить один из типов описанных картриджей дороже, чем процессор pentium Pro. Предлагаемые Intel процессоры pentium II работают на перечисленных ниже тактовых частотах.

Тип процессора/ Кратность тактовой Тактовая частота
быстродействие частоты системной платы, МГц
pentium II 233 3,5x 66
pentium II 266 4x 66
pentium II 300 4,5x 66
pentium II 333 5x 66
pentium II 350 3,5x 100
pentium II 400 4x 100
pentium II 450 4,5x 100
Ядро процессора pentium II имеет 7,5 млн транзисторов; при его производстве используется улучшенная архитектура Р6 компании Intel. Вначале все процессоры pentium II производились по 0,35-микронной технологии. А уже при изготовлении pentium II 333 МГц используется 0,25-микронная технология. Это позволяет уменьшить кристалл, увеличить тактовую частоту и снизить потребляемую мощность. При тактовой частоте 333 МГц эффективность процессора pentium II на 75–150% выше, чем pentium ММХ 233 МГц, а при проведении эталонных мультимедийных тестов приблизительно на 50% выше. На сегодня эти процессоры считаются довольно быстрыми. Приведенный выше Рис. 3.28. Компоненты картриджа SECC2 в этой главе индекс iCOMP 2.0 у pentium II 266 МГц вдвое выше, чем у оригинального процессора pentium 200 МГц. Если не учитывать скорость, то процессор pentium II можно рассматривать как комбинацию pentium Pro и технологии ММХ. У него такие же многопроцессорные возможности и точно такой же интегрированный кэш второго уровня, как у pentium Pro, а у ММХ заимствованы 57 новых мультимедийных команд. Кроме того, в pentium II объем внутренней кэш-памяти первого уровня вдвое выше, чем в pentium Pro (теперь он составляет не 16, а 32 Кбайт). Максимальная потребляемая процессором pentium II мощность и рабочее напряжение приведены ниже.
Основная тактовая Потребляемая Процесс (размер Напряжение, В
частота, МГц мощность, Вт структуры), микрон
450 27,1
0,25
2,0
400 24,3
0,25
2,0
350 21,5
0,25
2,0
333 23,7
0,25
2,0
300 43,0
0,35
2,8
266 38,2
0,35
2,8
233 34,8
0,35
2,8
Процессор pentium II 450 МГц потребляет меньшую мощность, чем его первоначальная версия 233 МГц. Это было достигнуто за счет уменьшения величины структуры до 0,25 микрон и снижения напряжения до 2,0 В. Как и в процессоре pentium Pro, в pentium II реализовано повышающее эффективность средство динамического выполнения. Основные особенности динамического выполнения следующие: множественное предсказание переходов, то ускоряет выполнение, прогнозируя поток программы через отдельные ветви; анализ потока данных, благодаря которому анализируются и переупорядочиваются команды программы; упреждающее выполнение, то «предугадывает» изменение счетчика команд и выполняет команды, результаты которых, вероятнее всего, вскоре понадобятся. Благодаря широкому использованию этих возможностей эффективность процессора pentium II значительно повышается. Таблица 3.14. Технические данные процессоров pentium II
Частота шины 66, 100 МГц
Кратность умножения частоты 3,5х, 4х, 4,5х, 5х
Тактовая частота 233, 266, 300, 333, 350, 400, 450 МГц
Объем встроенной кэш-памяти Первого уровня: 32 Кбайт (16 Кбайт для кода

и 16 Кбайт для данных); второго уровня: 512 Кбайт

(половинная тактовая частота процессора)
Разрядность внутренних регистров 32
Разрядность внешней шины данных 64
Разрядность шины адреса 36
Максимальная адресуемая память 64 Гбайт
Максимальная виртуальная память 64 Тбайт
Корпус 242-контактный с односторонним контактом (Single

Edge Contact Cartridge - SECC)
Размеры корпуса 12,82x6,28x1,64 см
Сопроцессор Встроенный
Снижение энергопотребления Система SMM (System Management Mode)
Как и в pentium Pro, в pentium II внедрена архитектура двойной независимой шины (Dual Independent Bus - DIB). Термин двойная независимая шина своим происхождением обязан двум независимым шинам в процессоре pentium II - шине кэш-памяти второго уровня и системной шине, по той происходит обмен данными между процессором и основной памятью. Pentium II может использовать обе шины одновременно, поэтому интенсивность обмена данными других устройств с pentium II может быть вдвое выше, чем с процессором, в котором использовалась архитектура одиночной шины. Архитектура двойной независимой шины позволяет повысить быстродействие кэш-памяти второго уровня процессора pentium II333 МГц в 2,5 раза. Причем с увеличением тактовой частоты процессоров pentium II возрастает и быстродействие кэш-памяти второго уровня. Кроме того, системная шина с конвейерной организацией позволяет параллельно выполнять два потока транзакций, а не один. Все эти улучшения архитектуры двойной независимой шины увеличивают ее пропускную способность почти в три раза по сравнению с пропускной способностью шины с одиночной архитектурой у обычного процессора Pentium. Общие технические данные процессоров pentium II приведены в табл. 3.14. Технические данные конкретных моделей pentium II приведены в табл. 3.15. Как видите, pentium II может адресовать до 64 Гбайт физической памяти. При его создании использовалась архитектура двойной независимой шины. Это значит, что процессор имеет две независимые шины: для доступа к кэш-памяти второго уровня и для доступа к основной памяти. Работают эти шины одновременно, значительно увеличивая проходящий через систему поток данных. Кэш-память первого уровня всегда работает на основной тактовой частоте процессора, потому что она установлена непосредственно на кристалле процессора. Кэш-память второго уровня в pentium II обычно работает на половине основной тактовой частоты процессора, что позволяет снизить стоимость Таблица 3.15. Технические данные процессора pentium II
Процессор pentium II ММХ (350, , 400 и 450 МГц)
Дата представления
15 апреля 1998 года
Тактовая частота
350 (100x3,5), 400 (100x4) и 450 (100x4,5) МГц

386, 440 и 483 (350, 400 и 450 МГц соответственно)
iCOMP 2.0

Количество транзисторов
7,5 млн (0,25-микронная технология) плюс 31 млн кэшпамяти второго уровня объемом 512 Кбайт
4 Гбайт
Рабочее напряжение
2,0 В
Тип разъема
Slot 2
Размер кристалла
Мобильный процессор pentium II (266, 300, 333 и 366 МГц)
Дата представления
25 января 1999 года
Тактовая частота
266, 300, 333 и 366 МГц
Количество транзисторов
27,4 млн (0,25-микронная технология)
Размеры
31x35 мм
Рабочее напряжение
1,6 В
Выделяемое тепло
366 Мгц - 9,5 Вт, 333 МГц - 8,6 Вт, 300 МГц - 7,7 Вт, 266 МГц - 7,0 Вт
Процессор pentium II ММХ (333 МГц)
Дата представления
7 мая 1997 года
Тактовая частота
333 МГц (66 МГцх 5)
Производительность по тесту
366
iCOMP 2.0

Количество транзисторов
7,5 млн (0,35-микронная технология) плюс 31 млн кэшпамяти второго уровня объемом 512 Кбайт
Кэшируемая оперативная память 512 Мбайт
Рабочее напряжение
2,0 В
Тип разъема
Slot 1
Размер кристалла
Квадрат со стороной 10,2 мм
Процессор pentium II ММХ (300 МГц)
Дата представления
7 мая 1997 года
Тактовая частота
300МГц(66МГцх4,5)
Производительность по тесту
332
iCOMP 2.0

Количество транзисторов
7,5 млн (0,35-микронная технология) плюс 31 млн кэшпамяти второго уровня объемом 512 Кбайт
Кэшируемая оперативная память 512 Мбайт
Тип разъема
Slot 1
Размер кристалла
Процессор pentium II ММХ (266 МГц)
Дата представления 7 мая 1997 года
Тактовая частота 266 МГц (66 МГц х 4)
Производительность по тесту 303
iCOMP 2.0
Количество транзисторов

Кэшируемая оперативная память 512 Мбайт
Тип разъема Slot 1
Размер кристалла Квадрат со стороной 14,2 мм
Процессор pentium II ММХ (233 МГц)
Дата представления 7 мая 1997 года
Тактовая частота 233 МГц (66 МГцх3,5)
Производительность по индексу 267
iCOMP 2.0
Количество транзисторов 7,5 млн (0,35-микронная технология) плюс 31 млн кэш-

памяти второго уровня объемом 512 Кбайт
Кэшируемая оперативная память 512 Мбайт
Тип разъема Slot 1
Размер кристалла Квадрат со стороной 14,2 мм
микросхемы кэша. к примеру, в pentium II 333 МГц кэш-память первого уровня работает на тактовой частоте 333 МГц, в то время как кэш-память второго уровня - на тактовой частоте 167 МГц. Хотя кэш-память второго уровня работает не на полной тактовой частоте, как это было в pentium Pro, ее быстродействие значительно выше по сравнению с кэш-памятью на системной плате, работающей на тактовой частоте 66 МГц (это частота большинства системных плат с гнездом типа Socket 7 для Pentium). Как утверждает Intel, пропускная способность новой двойной шины втрое выше, чем у обычной. Теперь, перенеся кэш-память из внутреннего корпуса процессора и используя внешнюю микросхему, установленную в одном корпусе, Intel может обходиться более дешевыми микросхемами кэш-памяти и еще больше увеличивать тактовую частоту процессора. Тактовая частота pentium Pro была ограничена 200 МГц, так как было трудно найти доступную кэш-память с более высокой частотой. А поскольку тактовая частота кэш-памяти составляет половину тактовой частоты процессора, pentium II может работать на частоте 400 МГц, что позволяет использовать микросхемы кэш-памяти с номинальной тактовой частотой всего лишь 200 МГц. Чтобы компенсировать половинную тактовую частоту кэш-памяти в Pentium II, Intel удвоила объем кэш-памяти второго уровня (в pentium Pro стандартный объем равен 256 Кбайт, а в pentium II - 512 Кбайт). Обратите внимание, что дескрипторы ОЗУ, имеющиеся в кэш-памяти второго уровня, дозапускают кэширование оперативной памяти объемом до 512 Мбайт в процессорах pentium II - от 233 до 333 МГц. В процессорах на 350, 400 МГц и выше дескрипторы ОЗУ расширены, поэтому в таких моделях разрешается кэшировать до 4 Гбайт оперативной памяти. Это очень важно, если вы планируете когда-либо установить память емкостью более 512 Мбайт. В этом случае вам определенно нужен процессор на 350 МГц или выше, иначе снижается эффективность памяти. Шина инфраструктуры pentium II может поддерживать один либо два процессора, при этом не требуются дополнительные микросхемы. Это дает возможность снизить стоимость симметричной многопроцессорной обработки данных, не добавляя дополнительных внешних микросхем, что позволит значительно увеличить эффективность многозадачных операционных систем и многопоточных приложений. В будущем наборы микросхем системной логики смогут организовать работу четырех или более процессоров pentium II в единой многопроцессорной системе, прежде всего для использования в качестве файл-сервера. Имеются версии pentium II с кодами коррекции ошибок (Error Correction Code - ЕСС) на шине кэша второго уровня (L2). Они разработаны специально для серверов или других систем, выполняющих жизненно важные задачи, в которых большую роль играет надежность и целостность данных. Во всех процессорах pentium II сигналы запроса и выдачи адреса на шину защищены контролем четности и, кроме того, предусмотрен механизм повторения для повышения целостности и надежности данных. Для установки pentium II в систему существует специальное крепление. Процессор устанавливается в Slot 1 на системной плате так, чтобы быть защищенным от повреждений в результате вибраций и толчков. Крепления разрабатываются изготовителями системных плат. (к примеру, такие системные платы, как Intel Boxed AL440FX и DK440LX, имеют крепления и другие важные компоненты для сборки инфраструктуры.) Pentium II генерирует большое количество тепла, то необходимо рассеивать. Для этого на процессоре устанавливается теплоотвод (радиатор),иногда можно использовать активный теплоотвод (вентилятор). В отличие от активных теплоотводов, устанавливаемых ранее для боксированных процессоров Intel, вентиляторы pentium II получают питание от разъема с тремя контактами на системной плате. Для электрического подключения вентиляторов в большинстве системных плат предусмотрено несколько соединителей. Для теплоотвода на системной плате имеются специальные монтажные отверстия. Обычно пластмассовая опорная стойка вставляется в отверстия теплоотвода рядом с центральным процессором (перед установкой картриджа центрального процессора с теплоот-водом). Большинство теплоотводов имеют два компонента: вентилятор в пластмассовом кожухе и металлический радиатор. Радиатор присоединяется к теплоотводящей пластине процессора и не снимается, тогда как вентилятор можно снять и заменить в случае необходимости. На рис. 3.29 отображен корпус SEC с вентилятором, проводами, по которым подводится питание, креплениями, разъемами и отверстиями для крепления к системной плате. В приведенных ниже таблицах указаны технические характеристики различных версий pentium П. Чтобы вы могли идентифицировать свой процессор pentium II, найдите номер спецификации на корпусе SEC. Он находится в изменяемой части метки на верхней стороне модуля процессора. Размещение маркировки отображено на рис. 3.30. По номеру спецификации (фактически это алфавитно-цифровой код) можно точно установить тип процессора (табл. 3.16). к примеру, номер спецификации SL2KA идентифицирует процессор как pentium II 333 МГц (тактовая частота системной шины 66 МГц) с кэш-памятью второго уровня (L2), в той применяются коды с исправлением ошибок. В этой же таблице указано, что для данного процессора требуется напряжение питания только 2,0 В. Кроме того, указан номер изменения, и, воспользовавшись изданным Intel руководством pentium II Specification Update Manual, вы можете точно узнать, какие изменения были внесены. Рис. 3.30. Упаковка процессора pentium II: корпус с односторонним контактом
SL37G dBO 0652h 400/100 512 ЕСС SECC2 OLGA 1,2,4
SL2WB dBO 0652h 450/100 512 ЕСС SECC 3.00 1 2, 5
SL37H dBO 0652h 450/100 512 ЕСС SECC2 OLGA 1 2
SL2KE TdBO 1632h 333/66 512 ЕСС PGA 2 4
SL2W7 dBO 0652h 266/66 512 ЕСС SECC 2.00 2 5
SL2W8 dBO 0652h 300/66 512 ЕСС SECC 3.00 2 5
SL2TV dBO 0652h 333/66 512 ЕСС SECC 3.00 2 5
SL2U3 dBO 0652h 350/100 512 ЕСС SECC 3.00 2 5
SL2U4 dBO 0652h 350/100 512 ЕСС SECC 3.00 2 5
SL2U5 dBO 0652h 400/100 512 ЕСС SECC 3.00 2 5
SL2U6 dBO 0652h 400/100 512 ЕСС SECC 3.00 2 5
SL2U7 dBO 0652h 450/100 512 ЕСС SECC 3.00 2 5
SL356 dBO 0652h 350/100 512 ЕСС SECC2 PLGA 2 5
SL357 dBO 0652h 400/100 512 ЕСС SECC2 OLGA 2 5
SL358 dBO 0652h 450/100 512 ЕСС SECC2 OLGA 2 5
SL37F dBO 0652h 350/100 512 ЕСС SECC2 PLGA 1 2, 5
SL3FN dBO 0652h 350/100 512 ЕСС SECC2 OLGA 2 5
SL3EE dBO 0652h 400/100 512 ЕСС SECC2 PLGA 2 5
SL3F9 dBO 0652h 400/100 512 ЕСС SECC2 PLGA 1 2
SL38M dBl 0653h 350/100 512 ЕСС SECC 3.00 1 2, 5
SL38N dBl 0653h 400/100 512 ЕСС SECC 3.00 1 2, 5
SL36U dBl 0653h 350/100 512 ЕСС SECC 3.00 2 5
SL38Z dBl 0653h 400/100 512 ЕСС SECC 3.00 2 5
SL3D5 dBl 0653h 400/100 512 ЕСС SECC2 OLGA 1 2
SECC - Single Edge Contact Cartridge. SECC2 - Single Edge Contact Cartridge, версия 2. PLGA - Plastic Land Grid Array. OLGA - Organic Land Grid Array. ECC - Error Correcting Code. 1 Процессор pentium II с установленным вентилятором («боксированный «). 2 Эти процессоры имеют расширенную кэш-память второго уровня, что позволяет кэши-ровать до 4 Гбайт основной памяти. Все остальные процессоры pentium II позволяют кэшировать 512 Мбайт. 3 Эти «боксированные « процессоры поддерживают коды коррекции ошибок для кэш-памяти второго уровня. 4 «Боксированный « процессор pentium II OverDrive с установленным вентилятором предназначен для обновления систем на базе процессоров Pentium Pro (Socket 8). 5 Эти процессоры могут работать только на фиксированной частоте, установленной производителем. Для их «разгона « необходимо повышать частоту системной шины. В настоящее время существует две модификации корпуса SECC2. Более старая модификация PLGA использовалась в корпусах SECC. Сейчас она заменяется модификацией OLGA. В этой модификации уменьшены размеры процессора, она проще в производстве и обеспечивает лучший отвод тепла от процессора - теплоотводные элементы монтируются непосредственно к микросхемам. На рис. 3.31 отображена сторона корпуса SECC2 (модификации PLGA и OLGA), к той монтируется теплоотводный элемент. Системные платы pentium II имеют преобразователь напряжения, который служит для подачи нужного напряжения на центральный процессор. Для разных моделей pentium II требуются различные напряжения, и поэтому преобразователь рекомендуется установить так, чтобы обеспечить этому конкретному процессору подачу необходимого напряжения. На платах для pentium Pro, в отличие от плат для более старых моделей Pentium, нет никаких переходных устройств или переключателей для установки напряжения: эта процедура выполняется автоматически с помощью имеющихся на корпусе процессора контактов идентификации напряжения (VID). В табл. 3.17 приведены значения устанавливаемого напряжения. Рис. 3.31. Корпус SECC2, модификации PLGA и OLGA
Таблица 3.17. Устанавливаемое напряжение для pentium II

Вся информация собрана из открытых источников. При испльзовании материалов, размещайте ссылку на источник.

VID4 VID3 VID2 VTD1 VTD0 Напряжение, В
0
1 1 1 1,30
0
1 1 0 1,35
0
1 0 1 1,40
0
1 0 0 1,45
0
0 1 1 1,50
0
0 1 0 1,55
0
0 0 1 1,60
0
0 0 0 1,65
0 0 1 1 1 1,70
0 0 1 1 0 1,75
0 0 1 0 1 1,80
0 0 1 0 0 1,85
0 0 0 1 1 1,90
0 0 0 1 0 1,95
0 0 0 0 1 2,00
0 0 0 0 0 2,05


1 1 1 Процессор не установлен


1 1 0 2,1


1 0 1 2,2


1 0 0 2,3


0 1 1 2,4


0 1 0 2,5


0 0 1 2,6


0 0 0 2,7

0 1 1 1 2,8

0 1 1 0 2,9

0 1 0 1 3,0

0 1 0 0 3,1

0 0 1 1 3,2

0 0 1 0 3,3

0

Весь материал основан на реальном тестировании процессоров.

Картриджи процессоров не вскрывались. Естесственно, существует некая вероятность, что купленный вами процессор на основании моих рекомендаций не "разгонится" до "требуемых" величин. Дабы этого не случилось я стараюсь проверить наибольшее количество процессоров из разных поставок и от разных реселлеров.

ПРЕДУПРЕЖДЕНИЕ : Автор и редакция не несут никакой ответственности за любой возможный ущерб в случае следования приведенным в данном материале рекомендациям. Все ваши действия на основании данного материала вы осуществляете на свой страх и риск.

Заметим, что внесение в процессор модификаций, описанных в данном материале, автоматически лишает вас каких-либо гарантийных обязательств со стороны продавца и производителя.

Все действия по разгону вы проводите на свой страх и риск, и принимаете на себя всю ответственность за возможные поломки и сбои.

Сразу после информации на этом сайте о том, что подтвердились слухи о ремаркированных P2-400 Deschutes в 300MHz Pentium II - я сразу же пошел на поиски и занялся тестированием. В России бушевал кризис, и в принципе это было наруку - была большая вероятность того, что процы не разберут, потому что за рубли торговать невыгодно, а за доллары - нельзя. (Но при желании - можно уговорить на баксы кого угодно:-))

Какие Pentium II "разгоняются"" и почему?

У Intel-а есть на данный момент 2 вида процессоров Pentium II. Это процессоры с ядрами Klamath и Deschutes.

Через мои руки прошло большое количество процессоров 300 Mhz Pentium II и 266 Mhz Pentium II, причем все они были куплены в разных фирмах, некоторые были жестоко выдраны из брендовых компьютеров.

Мой друг сходил на конференцию в Московский торговый офис Интел, поговорил с "главным" и еще больше укрепил мои надежды на то, что эта информация - полная правда. Но с некоторыми оговорками.

Начнем с истории (вроде как правдивой). Интел постороил в Коста-Рике /Очень далеко от Нас..... :-(/ наисовременнейший завод, расчитаный по технологическим нормам на рабочие частоты 400 - 500 МГц. И действительно на этом заводе производились первые "флагманские" 450 МГц процессоры.

Параллельно Интел перестал выпускать процессоры Klamath 2.8 V с частотами 233, 266 и 300 МГц, считая их слишком медленными и сильно греющимися. (Нам бы их проблемы - у нас вся страна бы работала на 300 МГц "устаревших" процессорах!) Возник реальный дефицит процессоров с частотами 266 и 300 МГц.

Серия с ядром Klamath бывает с частотами 233, 266 и 300 МГц. Основное отличие - питание 2.8 V и, как следствие, сильное тепловыделение. Топология ядра рассчитана на максимальную частоту 300 Мгц. Соответственно, теоретически любой процессор с ядром Klamath и с частотой менее 300 МГц может быть разогнан до 300 МГц отметки. Но он при этом начинает сильно греться, и реально работать можно лишь с открытой крышкой или в холодное время года (вспомните лето 1998 года с t=35 градусов, лично у Меня 266-й на 300 вис через 2 часа интенсивной работы с закрытой крышкой корпуса). Данные процессоры можно отнести к категории слаборазгоняемых и трудноразгоняемых.

Серия с ядром Deschutes бывает с частотами 266, 300, 333, 350, 400 и 450 МГц. Отличие - питание 2.0 V и, как следствие, слабое тепловыделение даже при частотах 400 МГц и 450 МГц. Топология ядра рассчитана на максимальную частоту 450 МГц. Соответственно, теоретически любой процессор с ядром Deschutes и с частотой менее 450 МГц может быть разогнан до 450 МГц отметки

Однако, тут есть много "практических" подводных камней.

  1. У многих процессоров заблокирован коэффициэнт умножения, и разгоняются они только увеличением частоты шины.
  2. У многих процессоров Intel специально ставит кэш-память L2 с временем доступа, необходимым для работы только на указанной частоте. Но есть некоторые серии процессоров с ядром Deschutes, которые замечательно гонятся на 100 и более мегагерц, и при этом практически не греются. На них, как правило, всего-лишь стоит более быстрая кэш-память и "нужный" TAG. Собственно этим процессорам и посвящена данная статья.

На заводе в Коста-Рике спешно стали делать параллельно с 450 МГц и 300 MГц Pentium II. Соответственно картиридж и ядро у этих процессоров - идентичны. Остается только кэш-память. И тут уже идут логические выводы, подтвержденные в настоящем времени на практике: Интелу бессмысленно покупать кэш память рассчитанную на 300 МГц процессоры для завода, работающего на производство ТОЛЬКО 450 МГц Pentium II (информация естесственно толко на "тот" отрезок времени). На этом основании логично предположить, что на складах завода в Коста-Рике на тот момент попросту не было плохой (150 МГц) кэш-памяти, а была только на 225 МГц. Поэтому первые 300 Mhz Pentium II, произведенные в Коста-Рике обладают не только ядром и картриджем от 450 МГц брата, но и кэш памятью, рассчитанной на 225 МГц (450 МГц/2). Дальше - хуже.

Интелу было не выгодно делать в злополучной Коста-Рике процессоры SL2W8 целиком. Завод после "передышки" и удовлетворения дефицита стал работать по т.н. "распределенной" и более выгодной для Интела схеме. Процессоры (Ядра) далее делали и делают в Коста-Рике, а ставят на плату и устававливают кэш-память в Филлипинах и Малайзии. Завод в настоящий момент производит только ядра для SL2W8 и процессоры SL2WB 450 Mhz ORIGINAL.

В Филлипинах собирают 266 и 300 Mhz Pentium II SL2W7 и SL2W8 соответственно, а в Малайзии - SL2U7 450 Mhz Pentium II с Коста-Риковским ядром и уже еще "улучшенным" картриджем (with Extended Thermal Plate). Получившиеся процессоры так-же имеют индекс SL2W8 300 Mhz Pentium II, и SL2W7 266 МГц Mhz Pentium II, но есть отличие на картридже - название страны . Вместо COSTA RICA - Phillipines. Но этого отличия мало.

Филлипинскому заводу переплачивать за 225 МГц кэш-память - уже бессмысленно. (450 МГц процессоры, как уже ранее сказанно, собираются совсем на другом заводе). Естесственно, кэш память в них ставится по принципу: чем дешевле, тем лучше, лишь-бы на 300 Mhz процессор заработал и кэш память была на 2 вольта! Поэтому гарантии работы процессора "Филлипинского происхождения" 300 МГц SL2W8 на 450 МГц получить уже сложнее.

Как следствие - прошедшая информация по Фидо, что один господин купил SL2W8, и он на 450 МГц глючил. С одной поправкой - процессор был Филлипинский . Видимо кэш-память уже не была рассчитана на работу при 225 МГц. Но плохие новости от перехода из COSTA RICA в Phillipines еще не закончились.

В Филлипинах даже сам картридж тоже бывает 2-х видов.

  • 1-й вариант (лучший) "А-ля Коста-Рика" - с охлаждением кэш памяти. Отличие - черный цвет металлической части и хорошо видный в овальной щели металлической части картриджа контакт между кэш-памятю и картриджем. (Передран с 400 и выше МГц Pentium II)
  • 2-й варинат (хуже) - без охлаждения. Отличие - Фиолетовый оттенок металлической части. (Передран с 333 МГц Pentium II)

Итог:

Мы имеем 3 "разных" SL2W8 300 Mhz Pentium II. Все три поставляются только в ОЕМ (без коробки и без вентилятора и радитатора). Все три с ядром 2.0 V. Процессоры SL2W7 266 Mhz Pentium II в Коста-Рике вроде бы не производились вообще, по крайней мере Я "живых" не видел.

SL2W7 существуют так же только в ОЕМ.

И в SL2W8 и в SL2W7коэффициэнт заблокирован НАМЕРТВО, т.е. жестко. Хваленый Real Power Overclocking от Абит BH-6 не помог!

Список частот, коэффициэнтов и частот шин в таблицах ниже.

Как отличить Klamath от Deschutes и выбрать нужный?

На коробке сбоку на наклейке должна быть надпись 80523 (Для 266 и 300 Мгц Pentium II часто подлый Intel нагло пишет 80522, если серия совпадает с необходимой, то надпись 80522 можно проигнорировать). Так же иногда на наклейке пишется 2.0 V, но так же есть вероятность секретных действий со стороны Intel.

Пример (см. рис. сверху): в коробке лежит 80523, а на коробке наклейка 80522. Хоть про 2.0 V соизволили написать! (По хорошему бред же пишут: вверху наклейки ядро 2.8 V, внизу - 2.0 V.)

а) На картридже с верхнего торца есть много надписей. Слава богу, тут Intel уже не шифруется с 80523 и 80522, если написано 80523 - то это точно Deschutes .

На рисунке - надпись 80523.

б) Иногда на картридже просто явно написано 2.0 V, справа от страны, но этой надписи часто нет на 266 и 300 Мгц Pentium II с ядром Deschutes.

с) Если взглянуть на картридж с нижнего торца, со стороны платы, то в указанном месте не должно быть конденсатора . ЕСЛИ ТАМ СТОИТ КОНДЕНСАТОР ЖЕЛТОГО ЦВЕТА КВАДРАТНОЙ ФОРМЫ - ТО ЭТО ТОЧНО Klamath .

На рисунке конденсатора нет.

  1. С охлаждением КЭШ-ПАМЯТИ L2
  2. Без таковой

Естессственно, для разгона нужен именно с охлаждением.

Как это проверить:

  • На рисунке указанно, куда надо посмотреть на картридж, там будет видна кэш-память L2 (по 1 микросхеме с каждой стороны).
  • Между ней и металлической частью картриджа (под указанным углом) отчетливо виден контакт.
  • В случае если между кэшем и картриджем - воздух, камень жить будет на высокой частоте и повышенном напряжении часа этак 2.

Расшифровка надписей на процессорном картридже и коробке

Если процессор в БОКСЕ (коробке):

Если процессор OEM ("голый" и без коробки, так-же без радиатора)

"Разгоняемые" серии процессоров

Pentium II с частотами 266 Mhz

Серия: SL33D
Поставка: BOX в коробке
Страна: MALAY Малайзия
"Родная" Частота шины: 66 Мгц
Напряжение: 2.0 V
TAG: T6(82459AB)
Ядро: dB0
TagRAM STEPPING: A0
КЕШ L2 512 Kb ECC
Тип картриджа: B1 с охлаждением Кеш-памяти
Коэфф. умножения: х 4 неизменяемый вообще
7 шт.
Из них заработало стабильно : 7 шт.
Из них заработало стабильно : 5 шт.
Из них заработало совсем стабильно : 3 шт.
Не разогналось процессоров вообще: 0 шт.

Cерия: SL2W7
Поставка: OEM без коробки
Страна: Phllipines Филлипины
"Родная" Частота шины: 66 Мгц
Напряжение: 2.0 V
TAG: T6 P-e
Ядро: dB0
TagRAM STEPPING: A0
КЕШ L2 512 Kb ECC
Тип картриджа: B1 с охлаждением Кеш-памяти
Коэфф. умножения: х 4 неизменяемый вообще
Кол-во процессоровов оттестировано: 10 шт.
Из них заработало стабильно : 10 шт. на 400 Мгц - при 2.05 V и шине 100 Мгц
Из них заработало стабильно : 3 шт. на 412 Мгц - при 2.05 V и шине 102,5 Мгц
Из них заработало стабильно : 1 шт. на 448 Мгц - при 2.05 V и шине 112 Мгц
0 шт.

Пример картинки картриджа:

Pentium II с частотами 300 Mhz

Cерия: SL2W8
Поставка: OEM без коробки
Страна: COSTA RICA Коста Рика
"Родная" Частота шины: 66 Мгц
Напряжение: 2.0 V
TAG: T6 P-e
Ядро: dB0
TagRAM STEPPING: A0
КЕШ L2 512 Kb ECC
Тип картриджа: B1 с охлаждением кэш-памяти
Коэфф. умножения: х 4.5 неизменяемый вообще
Кол-во процессоровов оттестировано: 18 шт.
Из них заработало стабильно : 17 шт.
Из них заработало стабильно : 13 шт.
Из них заработало почти стабильно : 2 шт. на 504 Мгц - при 2.05 - 2.2 V и шине 112 Мгц
Не разогналось процессоров вообще: 1 шт.
Номера разгоняемых серий: 0830065-хххх Costa Rica, 08310258-xxxx Costa Rica
08310385-xxxx Costa Rica,
08370780-xxxx Costa Rica
Номера неразгоняемых серий: 0830095 -хххх Costa Rica

Пример картинки картриджа: (на картридже номер 08310258-хххх - для сверки, где его искать)

Cерия: SL2W8
Поставка: OEM без коробки
Страна: Phillipines Филлипины
"Родная" Частота шины: 66 Мгц
Напряжение: 2.0 V
TAG: T6 P-e
Ядро: dB0
TagRAM STEPPING: A0
КЕШ L2 512 Kb ECC
Тип картриджа: B1 с охлаждением Кеш-памяти
Коэфф. умножения: х 4.5 неизменяемый вообще
Кол-во процессоровов оттестировано: 6 шт.
Из них заработало стабильно : 4 шт. на 450 Мгц - при 2.05 V и шине 100 Мгц
Из них заработало стабильно : 3 шт. на 463 Мгц - при 2.05 V и шине 102,5 Мгц
Из них заработало почти стабильно : 0 шт. на 504 Мгц - при 2.2 V и шине 112 Мгц
Не разогналось процессоров вообще: 2 шт.

Пример картинки картриджа:

Cерия: SL2YK
Поставка: BOX c коробкой
Страна: MALAY Малайзия
"Родная" Частота шины: 66 Мгц
Напряжение: 2.0 V
TAG: T6(82459AB) Есть версии TAG и на 300 и на 450 Мгц
Ядро: dB0
TagRAM STEPPING: A0
КЕШ L2 512 Kb ECC
Тип картриджа: B1 с охлаждением Кеш-памяти
Коэфф. умножения: х 4.5 неизменяемый вообще
Кол-во процессоровов оттестировано: 3 шт.
Из них заработало стабильно : 2 шт. на 450 Мгц - при 2.05 V и шине 100 Мгц
Из них заработало стабильно : 1 шт. на 463 Мгц - при 2.05 V и шине 102,5 Мгц
Из них заработало совсем стабильно : 1 шт. на 504 Мгц - при 2.05 V и шине 112 Мгц
Из них заработало почти стабильно : 1 шт. на 558 Мгц - при 2.10 V и шине 124 Мгц
Не разогналось процессоров вообще: 0 шт.

Пример картинки наклейки на коробке:

Сам я работаю на SL2YK, который работает на частотах до 558 Мгц (работаю на 504 Мгц 2.05V). Его серийный номер на данной картинке. Куплен на базаре в Митино.

Рекомендации по разгону и тестированию купленного процессора

Я вас поздравляю с покупкой. Но покупку надо и потестировать. Для быстроты и полноты тестов я использую следующую схему. (Тем, кому схема теста не нравится прошу не критиковать, лучше предложите свой способ).

  • Процессор ставится на "родную" частоту.
    • Проверяется напряжение на процессоре через BIOS, дабы не спалить покупочку, должно быть 2.0V.
  • Выключается скрин-сейвер.
  • Запускается Unreal в Software (с выключенной 3DFX Glide или другой (OpenGL/D3D) акселерацией) в 800х600.
  • Ставится на ночь (или на 8-12 часов). Если утром замок еще вертится, то Ваш компутер совместим с Unreal"oм:-)
  • Камень разгоняется до ваших пожеланий (например, с 300 Мгц до 450 Мгц).
  • Снова 1 ночь с Unreal-om по той-же схеме.
    • Если с утреца замок еще крутится - скорее всего камень жить будет! Погоняйте его хорошенько только если еще "Final Reality Demo" в Software в зацикленном режиме для пущей убежденности самого себя в удачной покупке.
    • Если машина сбросилась - то Вам не повезло.

      ВНИМАНИЕ!!! ЭТИ КАМНИ НЕ ВИСНУТ!!! , ОНИ СБРАСЫВАЮТСЯ, КАК БУДТО КТО_ТО НАЖАЛ НА RESET, ЕСЛИ МАШИНА СБРАСЫВАЕТСЯ ХОТЬ ИНОГДА - ТО ЭТО ОЧЕНЬ ПЛОХО.

      Возможный выход из ситуации: поднять напряжение с 2.0V до 2.05 V. Если не помогает - то поднять еще немножко, но не больше, чем 2.2 V. и только c программным охлаждением.

      Ни в коем случае не увлекайтесь чрезмерным поднятием напряжения -- спалите TAG и камень станет Целероном %-).

      Операцию Unreal на 1 ночь повторить. В 50% случаев небольшое поднятие напяжения помогает и камень начинает работать СТАБИЛЬНО. (Для этого необходима мать от ABIT BX-6 или ABIT BH-6 или сделать все руками)

    • Если машина выкинула вас в Win95, и не сбросилась - этот трабл я еще не решил, но считаю это багом. В общем смотрите "возможный выход из ситуации" выше или не так сильно разгоняйте. (Часто такой баг проявляется на 504 Мгц и выше).

Да, и не забудьте, что при шине 112 МГц может глючит не только процессор, но и: память, винт, SCSI, CD-ROM. Поэтому, с обвинением процессора сразу не горячитесь.

Замеченные Мной глюки на 112 Мгц шине /кратко/:

  • Diamond Viper 330 из "новой версии" под формат NLX с памятью IBM не работает в 3D-режимах. (Надпись на наклейке сзади: VIPER 330 AGP-NLX 4M OEM). Со старым Viper 330 все ОК.
  • Винты работают только на коротких шлейфах, иногда без UDMA.
  • Многие CDROM-ы (Часто так же лечится укорачиванием шлейфа IDE).

Температура разогнанного процессора

При разгоне и даже незначительно поднятом (0,05 V) напряжении камень начинает греться сильнее. Это конечно не сравнить с тем, КАК греется 266-й Pentium II 2.8 V, но тем не менее совокупность некоторых условий:

  • жаркое лето
  • Закрытый корпус набитый "до отказа"
  • Другие компоненты с тепловыделением
может сделать воздушное охлаждение малоэффективным из-за маленького перепада темпетатур, и на этом основании я настоятельно рекомендую пользоватся любой программой для охлаждения CPU которую можно взять на сайте Термоскоп .

Лично я отдаю предпочтение CpuIdle , который можно взять , и выражаю огромное спасибо Сергею Вильянову за консультации и программную поддрежку во время тестов.

Самое главное после процессора - системная плата или просто мать. Лично я рекомендую ABIT BX-6 или ABIT BH-6, поскольку в них есть, как я считаю, ряд незаменимых функций:

  • Регулировка напряжения (позволяет "стабилизировать" работу процессора в 50% случаев)
  • Режим hold on error (сброс частоты процессора при ошибке, делает разгон более безопасным ) / но он не работает на шине 112 Мгц и выше - пишет что камень нестабилен несмотря ни на что./
  • Полное наплевание на автодетектирование типа процессора (как поставишь - так и будет!)
  • Режим Power OverClocking на "BH-6" для желающих в будущем гнать 350 и 400 PII до 450 и 500 Мгц (позволяет разблокировать коэффициэнт умножения, но работает не на всех процессорах)
  • В "BH-6" 5 PCI слотов и 2 ISA - я считаю что PCI все нужнее и нужнее. Минус на BH-6 - пока еще кривой биос, но очень даже работоспособный.

Про память

Понравились и не глючила:

  • MICRON 10 ns
  • LG 7ns
  • HYUNDAI 10ns с 2-мя желтыми наклейками "HYUNDAI"
  • Сам работаю на Hitachi 128 Мб PC-100 (PC-100-322-60) на 112 Мгц и всем, кому собирал компьютеры - ставил Хитачи.

Аппаратура предоставлена/куплена:

  • Slim+ (есть нормальный манибек 7 дней)
  • USN (классная контора "полного цикла" где есть почти все, что нужно для сборки компьютера)
  • IP-LABS (брал ABIT BH-6 3 шт.)

Процессоры специально покупались и покупаются в абсолютно разных конторах.