Что такое свитч или сетевой коммутатор. Нужен ли управляемый коммутатор

Любой системный администратор рано или поздно сталкивается с задачей построения или модернизации локальной сети предприятия. К такому вопросу следует подходить очень серьезно и основательно, т.к. от этого зависит дальнейшая беззаботная работа.

Как выбрать коммутатор под свои задачи, чтобы потом не покупать новый?

Коммутатор или в простонародье свитч - это сетевое устройство, которое соединяет несколько компьютеров в одну единую локальную сеть. Современные свитчи обладают очень большим рядом функций, которые очень сильно могут облегчить дальнейшую работу админа. От правильного выбора свитчей зависит функционирование всей локальной сети и работа предприятия в целом.

При выборе сетевого оборудования начинающий системный администратор сталкивается с большим количеством непонятных обозначений и поддерживаемых протоколов. Данное руководство написано с целью восполнить этот пробел знаний у начинающих.

Вводная информация

Многие до сих пор не видят разницы между свичом и хабом. Понимая, что тема уже много раз обсуждалась, все же хотелось начать именно с нее.

Для свитчей это правило уже не актуально, т.к. современные свитчи даже начального уровня в ходе работы формируют таблицу коммутации, набирая список MAC-адресов, и согласно нее осуществляют пересылку данных. Каждый свитч, после непродолжительного времени работы, "знает" на каком порту находится каждый компьютер в сети.

При первом включении, таблица коммутации пуста и коммутатор начинает работать в режиме обучения. В режиме обучения работа свича идентична работе хаба: коммутатор, получая поступающие на один порт данные, пересылает их на все остальные порты. В это время коммутатор производит анализ всех проходящих портов и в итоге составляет таблицу коммутации.

Особенности, на которые следует обратить внимание при выборе коммутатора

Чтобы правильно сделать выбор при покупке коммутатора, нужно понимать все обозначения, которые указываются производителем. Покупая даже самое дешевое устройство, можно заметить большой список поддерживаемых стандартов и функций. Каждый производитель сетевого оборудования старается указать в характеристиках как можно больше функций, чтобы тем самым выделить свой продукт среди конкурентов и повысить конечную стоимость.

Распространенные функции коммутаторов:

  • Количество портов . Общее количество портов, к которым можно подключить различные сетевые устройства.

    Количество портов лежит в диапазоне от 5 до 48.

  • Базовая скорость передачи данных . Это скорость, на которой работает каждый порт коммутатора. Обычно указывается несколько скоростей, к примеру, 10/100/1000 Мб/сек . Это говорит о том, что порт умеет работать на всех указанных скоростях. В большинстве случаев коммутатор поддерживает стандарт IEEE 802.3 Nway автоопределение скорости портов.

    При выборе коммутатора следует учитывать характер работы подключенных к нему пользователей.

  • Внутренняя пропускная способность . Этот параметр сам по себе не играет большого значения. Чтобы правильно выбрать коммутатор, на него следует обращать внимание только в паре с суммарной максимальной скоростью всех портов коммутатора (это значение можно посчитать самостоятельно, умножив количество портов на базовую скорость порта). Соотнося эти два значения можно оценить производительность коммутатора в моменты пиковой нагрузки, когда все подключенные пользователи максимально используют возможности сетевого подключения.

    К примеру, Вы используете 16-портовый коммутатор на скорости 100 Мб/сек, имеющий пропускную способность в 1Гб/сек. В моменты пиковой нагрузки 16 портов смогут передавать объем информации равный:

    16x100=1б00(Мб/сек)=1.6(Гб/сек)

    Полученное значение меньше пропускной способности самого коммутатора. Такой коммутатор подойдет в большинстве случаев небольшой организации, где на практике приведенную ситуацию можно встретить крайне редко, но не подойдет для организации, где передаются большие объемы информации.

    Для правильного выбора коммутатора следует учитывать, что в действительности внутренняя пропускная способность не всегда соответствует значению, которое заявлено производителем.

  • Автосогласование между режимами Full-duplex или Half-duplex . В режиме Full-duplex данные передаются в двух направлениях одновременно. При режиме Half-duplex данные могут передаваться только в одну сторону одновременно. Функция автосогласования между режимами позволяет избежать проблем с использованием разных режимов на разных устройствах.
  • Автоопределение типа кабеля MDI/MDI-X . Это функция автоматически определят по какому стандарту был "обжат" кабель витая пара, позволяя работать этим 2 стандартам в одной ЛВС.
  • Стандарт MDI :

    Стандарт MDI-X:

  • Наличие порта Uplink . Порт Uplink предназначен для каскадирования коммутаторов, т.е. объединение двух коммутаторов между собой. Для их соединения использовался перекрестный кабель (Crossover). Сейчас такие порты можно встретить только на старых коммутаторах или на специфическом оборудовании. Грубо говоря, в современных коммутаторах все порты работают как Uplink.
  • Стекирование . Под стекированием коммутаторов понимается объединение нескольких коммутаторов в одно логическое устройство. Стекирование целесообразно производить, когда в итоге требуется получить коммутатор с большим количеством портов (больше 48 портов). Различные производители коммутаторов используют свои фирменные технологии стекирования, к примеру, Cisco использует технологию стекирования StackWise (шина между коммутаторами 32 Гбит/сек) и StackWise Plus (шина между коммутаторами 64 Гбит/сек).

    При выборе коммутатора следует отдавать предпочтение устройствам поддерживающим стекирование, т.к. в будущем эта функция может оказаться полезной.

  • Возможность установки в стойку . Это означает, что такой коммутатор можно установить в стойку или в коммутационный шкаф. Наибольшее распространение получили 19 дюймовые шкафы и стойки, которые стали для современного сетевого оборудования неписанным стандартом.

    Большинство современных устройств имеют такую поддержку, поэтому при выборе коммутатора не стоит акцентировать на этом большого внимания.

  • Количество слотов расширения . Некоторые коммутаторы имеют несколько слотов расширения, позволяющие разместить дополнительные интерфейсы. В качестве дополнительных интерфейсов выступают гигабитные модули, использующие витую пару, и оптические интерфейсы, способные передавать данные по оптоволоконному кабелю.
  • Размер таблицы MAC-адресов . Это размер коммутационной таблицы, в которой соотносятся встречаемые MAC-адреса с определенным портом коммутатора. При нехватке места в коммутационной таблице происходит затирание долго не используемых MAC-адерсов. Если количество компьютеров в сети много больше размера таблицы, то происходит заметное снижение производительности коммутатора, т.к. при каждом новом MAC-адресе происходит поиск компьютера и внесение отметки в таблицу.

    При выборе коммутатора следует прикинуть примерное количество компьютеров и размер таблицы MAC-адресов коммутатора.

  • Flow Control (Управление потоком). Управление потоком IEEE 802.3x обеспечивает защиту от потерь пакетов при их передаче по сети. К примеру, коммутатор во время пиковых нагрузок, не справляясь с потоком данных, отсылает отправляющему устройству сигнал о переполнении буфера и приостанавливает получение данных. Отправляющее устройство, получая такой сигнал, останавливает передачу данных до тех пор, пока не последует положительного ответа от коммутатора о возобновлении процесса. Таким образом два устройства как бы "договариваются" между собой когда передавать данные, а когда нет.

    Так как эта функция присутствует почти во всех современных коммутаторах, то при выборе коммутатора на ней не следует акцентировать особого внимания.

  • Jumbo Frame . Наличие этой функции позволяет коммутатору работать с более большим размером пакета, чем это оговорено в стандарте Ethernet.

    После приема каждого пакета тратится некоторое время на его обработку. При использовании увеличенного размера пакета по технологии Jumbo Frame, можно существенно сэкономить на времени обработки пакета в сетях, где используются скорости передачи данных от 1 Гб/сек и выше. При меньшей скорости большого выигрыша ждать не стоит.

    Технология Jumbo Frame работает только между двумя устройствами, которые оба ее поддерживают.

    При подборе коммутатора на этой функции не стоит заострять внимание, т.к. она присутствует почти во всех устройствах.

  • Power over Ethernet (PoE) . Эта технология передачи электрического тока для питания коммутатора по неиспользуемым проводам витой пары. Стандарт IEEE 802.af.
  • Встроенная грозозащита . Некоторые производители встраивают в свои коммутаторы технологию защиты от гроз. Такой коммутатор следует обязательно заземлить, иначе смысл этой дополнительной функции отпадает.

Читайте о новинках железа, новости компьютерных компаний и будите всегда в курсе последних достижений.

Какие коммутаторы бывают?

Помимо того, что все существующие коммутаторы различаются количеством портов (5, 8, 16, 24 и 48 портов и т.д.) и скоростью передачи данных (100Мб/сек, 1Гб/сек и 10Гб/сек и т.д.), коммутаторы можно так же разделить на:

  1. Неуправляемые свичи - это простые автономные устройства, которые управляют передачей данных самостоятельно и не имеющие инструментов ручного управления. Некоторые модели неуправляемых свичей имеют встроенные инструменты мониторинга (например некоторые свичи Compex).

    Такие коммутаторы получили наибольшее распространение в "домашних" ЛВС и малых предприятиях, основным плюсом которых можно назвать низкую цену и автономную работу, без вмешательства человека.

    Минусами у неуправляемых коммутаторов является отсутствие инструментов управления и малая внутренняя производительность. Поэтому в больших сетях предприятий неуправляемые коммутаторы использовать не разумно, так как администрирование такой сети требует огромных человеческих усилий и накладывает ряд существенных ограничений.

  2. Управляемые свичи - это более продвинутые устройства, которые также работают в автоматическом режиме, но помимо этого имеют ручное управление. Ручное управление позволяет очень гибко настроить работу коммутатора и облегчить жизнь системного администратора.

    Основным минусом управляемых коммутаторов является цена, которая зависит от возможностей самого коммутатора и его производительности.

Абсолютно все коммутаторы можно разделить по уровням. Чем выше уровень, тем сложней устройство, а значит и дороже. Уровень коммутатора определяется слоем на котором он работает по сетевой модели OSI .

Для правильного выбора коммутатора Вам потребуется определиться на каком сетевом уровне необходимо администрировать ЛВС.

Разделение коммутаторов по уровням:

  1. Коммутатор 1 уровня (Layer 1). Сюда относятся все устройства, которые работают на 1 уровне сетевой модели OSI - физическом уровне . К таким устройствам относятся повторители, хабы и другие устройства, которые не работают с данными вообще, а работают с сигналами. Эти устройства передают информацию, словно льют воду. Если есть вода, то переливают ее дальше, нет воды, то ждут. Такие устройства уже давно не производят и найти их довольно сложно.
  2. Коммутатор 2 уровня (Layer 2). Сюда относятся все устройства, которые работают на 2 уровне сетевой модели OSI - канальном уровне . К таким устройствам можно отнести все неуправляемые коммутаторы и часть управляемых.

    Коммутаторы 2 уровня работают с данными ни как с непрерывным потоком информации (коммутаторы 1 уровня), а как с отдельными порциями информации - кадрами (frame или жарг. фреймами ). Умеют анализировать получаемые кадры и работать с MAC-адресами устройств отправителей и получателей кадра. Такие коммутаторы "не понимают" IP-адреса компьютеров, для них все устройства имеют названия в виде MAC-адресов.

    Коммутаторы 2 уровня составляют коммутационные таблицы, в которых соотносят MAC-адреса встречающихся сетевых устройств с конкретными портами коммутатора.

    Коммутаторы 2 уровня поддерживают протоколы:


  3. Коммутатор 3 уровня (Layer 3). Сюда относятся все устройства, которые работают на 3 уровне сетевой модели OSI - сетевом уровне . К таким устройствам относятся все маршрутизаторы, часть управляемых коммутаторов, а так же все устройства, которые умеют работать с различными сетевыми протоколами: IPv4, IPv6, IPX, IPsec и т.д. Коммутаторы 3 уровня целесообразнее отнести уже не к разряду коммутаторов, а к разряду маршрутизаторов, так как эти устройства уже полноценно могут маршрутизировать, проходящий трафик, между разными сетями. Коммутаторы 3 уровня полностью поддерживают все функции и стандарты коммутаторов 2 уровня. С сетевыми устройствами могут работать по IP-адресам. Коммутатор 3 уровня поддерживает установку различных соединений: pptp, pppoe, vpn и т.д.
  4. Коммутатор 4 уровня (Layer 4). Сюда относятся все устройства, которые работают на 4 уровне сетевой модели OSI - транспортном уровне . К таким устройствам относятся более продвинутые маршрутизаторы, которые умеют работать уже с приложениями. Коммутаторы 4 уровня используют информацию, которая содержится в заголовках пакетов и относится к уровню 3 и 4 стека протоколов, такую как IP-адреса источника и приемника, биты SYN/FIN, отмечающие начало и конец прикладных сеансов, а также номера портов TCP/UDP для идентификации принадлежности трафика к различным приложениям. На основании этой информации, коммутаторы уровня 4 могут принимать интеллектуальные решения о перенаправлении трафика того или иного сеанса.

Чтобы правильно подобрать коммутатор Вам нужно представлять всю топологию будущей сети, рассчитать примерное количество пользователей, выбрать скорость передачи данных для каждого участка сети и уже под конкретную задачу начинать подбирать оборудование.

Управление коммутаторами

Интеллектуальными коммутаторами можно управлять различными способами:

  • через SSH-доступ . Подключение к управляемому коммутатору осуществляется по защищенному протоколу SSH, применяя различные клиенты (putty, gSTP и т.д.). Настройка происходит через командную строку коммутатора.
  • через Telnet-доступ к консольному порту коммутатора. Подключение к управляемому коммутатору осуществляется по протоколу Telnet. В результате мы получаем доступ к командной строке коммутатора. Применение такого доступа оправданно только при первоначальной настройки, т. к. Telnet является незащищенным каналом передачи данных.
  • через Web-интерфейс . Настройка производится через WEB-браузер. В большинстве случаев настройка через Web-интерфейс не дает воспользоваться всеми функциями сетевого оборудования, которые доступны в полном объеме только в режиме командной строки.
  • через протокол SNMP . SNMP - это протокол простого управления сетями.

    Администратор сети может контролировать и настраивать сразу несколько сетевых устройств со своего компьютера. Благодаря унификации и стандартизации этого протокола появляется возможность централизованно проверять и настраивать все основные компоненты сети.

Чтобы правильно выбрать управляемый коммутатор стоит обратить внимание на устройства, которые имеют SSH-доступ и протокол SNMP. Несомненно Web-интерфейс облегчает первоначальную настройку коммутатора, но практически всегда имеет меньшее количество функций, чем командная строка, поэтому его наличие приветствуется, но не является обязательным.

Случайные 7 статей.

Необходимо рассчитать, какой объем трафика будет передаваться по сети. Например, если требуется регулярно производить резервное копирование нескольких десятков или даже сотен гигабайт информации с нескольких компьютеров, будет разумно приобрести коммутатор с портами 1000 Мбит/с (Gigabit Ethernet). Для малых объемов трафика будет достаточно 100-мегабитного коммутатора (Fast Ethernet).

Кроме того, необходимо учитывать, какую скорость поддерживают сетевые адаптеры компьютеров и других устройств в сети. Если подавляющее большинство устройств оснащено сетевыми адаптерами Fast Ethernet 100 Мбит/с, то покупать гигабитный коммутатор не имеет смысла. Однако следует отметить, что все современные материнские платы компьютеров оснащаются интерфейсом Gigabit Ethernet.

Внутренняя пропускная способность

Внутренняя пропускная способность коммутатора показывает, какой объем трафика коммутатор сможет обрабатывать в периоды пиковой нагрузки на все порты. Данную характеристику не следует путать с суммарной пропускной способностью всех портов в дуплексном режиме. Внутренняя пропускная способность может быть меньше, особенно у коммутаторов с большим количеством портов.

Например, у 16-портового коммутатора Fast Ethernet суммарная пропускная способность портов в дуплексном режиме составляет: 16 (количество портов) x 100 Мбит/с x 2 (дуплекс) = 3,2 Гбит/с. Если внутренняя пропускная способность коммутатора меньше 3,2 Гбит/с, то он будет плохо справляться с пиковыми нагрузками и может зависать.

Наличие слотов расширения

Некоторые модели коммутаторов имеют один или несколько слотов расширения для установки модулей с дополнительными интерфейсами. Такие модули приобретаются отдельно. Это могут быть, например, модули Gigabit Ethernet, использующие витую пару или волоконно-оптический кабель.

Поддержка стандарта IEEE 802.1p (приоритезация трафика)

Если коммутатор будет использоваться в сети, где ключевое значение имеет, например, передача потокового видео с камер наблюдения, то наличие функции приоритезации трафика (Priority tags) крайне желательно. Это позволит присвоить пакетам потокового видео самый высокий приоритет, и коммутатор будет обрабатывать и передавать такие пакеты в первую очередь, благодаря чему прямая трансляция видео будет происходить без задержек и разрывов.

Или по другому switch - это устройство, которое предназначено для объединения нескольких сетевых приборов в одной области сети. Данное устройство работает на втором (канальном) уровне сетевой модели OSI .

Принцип работы сетевого коммутатора

В сетевом коммутаторе заложена специальная схема коммутации в виде таблицы, которая хранится в ассоциативной памяти самого устройства. В данной таблице располагаются MAC-адреса узлов. Во время запуска свитча таблица остаётся пустой. На следующем этапе данные, которые поступили на один из портов автоматически отправляются на все оставшиеся порты. В этот момент данное устройство находится в процессе анализирования кадров, определив MAC-адрес отправителя оставляет его в таблице. Далее, если MAC-адрес клиента не инициализирован с каким нибудь портом, то фреймы (кадры) отправляются на оставшиеся порты, кроме порта отправителя.

Рисунок 1. Неуправляемый коммутатор

Характеристика сетевого коммутатора

Режимы коммутации сетевого коммутатора

Одной из характеристик является - вид режима коммутации . Распространены три режима, каждый их которых комбинирует в себе режим ожидания и уровень надёжности:

  • Режим временного хранения считывает данные во фрейме, осуществляет проверку на наличие ошибок, затем определяет порт и отправляет в него фрейм.
  • Сквозной . Свитч читает во фрейме только адрес, затем выполняется процесс коммутации. Главное преимущество данного режима - высокая скорость передачи данных.
  • Бесфрагментный . Это модифицированный вариант сквозного режима. Данные передаются после фильтрации фрагментов на определение коллизий (конфликтов). Первые 64 байта первого кадра проходят проверку на наличие коллизий (конфликтов), если фрейм оказывается повреждённый или определяется коллизия, то передача данных невозможна.

Виды сетевых коммутаторов

Сетевые коммутаторы принято делить на два вида:

  1. Неуправляемые
  2. Управляемые

Неуправляемые коммутаторы

Неуправляемые коммутаторы - это коммутаторы, которые не имеют конфигурационного интерфейса или каких либо других настроек. Это такие устройства, которые работают по принципу "Plug and Play", например при установке windows server 2003 , неуправляемый коммутатор можно установить и сразу пользоваться. Данные свитчи подаются по невысокой цене и используются дома или в малых предприятиях.

Управляемые коммутаторы

Рисунок 2. Управляемый коммутатор

Эти коммутаторы являются сложными устройствами и позволяют настраивать коммутацию на сетевом уровне модели OSI . Имеют несколько вариантов изменения режима работы: интерфейс командной строки, TelNet, Secure Shell, работающие через протокол управления сетью (SNMP). Примеры конфигурирования: настройка пропускной способности, создание/изменение виртуальной частной сети (VPN). В свою очередь управляемые коммутаторы делятся на два подвида:

Простые

Это сетевые коммутаторы с ограниченным набором конфигурационных настроек. Данные свитчи продаются на рынке в ценовом диапазоне между управляемыми и неуправляемыми коммутаторми . В данном варианте предоставлена возможность управления устройством через веб-интерфейс, а так же такие базовые настройки как: настройка VLAN, управление пропускной способностью.

Сложные (корпоративные) коммутаторы

Имеют полный набор функционального управления, в том числе: CLI, SNMP, веб-интерфейс. В некоторых вариантах возможно дополнительные конфигурационные функции, например: резервное копирование и восстановление конфигураций. Корпоративные коммутаторы обычно используются в в больших производительных системах и находятся в специальных стойках.

Сложные коммутаторы часто объединяют в одно сетевое устройство, именуемое - стек. Делается это для увеличения количества портов.

Рисунок 3.Стек

Сетевой коммутатор (network switch) – это устройство, используемое в сетях передачи пакетов, предназначенное для объединения нескольких сегментов. В отличие от (router) коммутатор работает на модели , что и определяет главные различия между ними. Коммутатор не занимается расчетом маршрута для дальнейшей передачи пакетов по сети, анализируя различные факторы, как это делает . Switch только передает данные от одного порта к другому на основе содержащейся в пакете информации. Обычно признаком выбора выходного порта служит MAC-адрес устройства, к которому передаются данные. В свою очередь коммутатор в отличие от или не просто транслирует порты ко всем выходам, которые у него есть, а к одному, заранее выбранному.

Пример сети с коммутатором

Сетевые коммутаторы применяются в нескольких , но наибольшее распространение нашли в . Главной их задачей в сети является разделение сети на сегменты. Это особенно актуально в сетях с большим числом рабочих станций, т.к. чем больше оконечных устройств работают одновременно с единой средой передачи данных тем выше вероятность возникновения коллизии (одновременной передачи данных несколькими устройствами) и, следовательно, ниже эффективность работы сети. Коммутатор позволяет разбить единую сеть на несколько сегментов и увеличить число одновременно работающих устройств.

Существую управляемые и неуправляемые коммутаторы. Неуправляемые коммутаторы самонастраиваются после включения в сеть. Они анализируют MAC-адреса всех устройств, подключенных к ним и будут осуществлять коммутацию между портами на основе анализа заголовка пакета, в котором содержится MAC-адресом устройства-получателя. Управляемые коммутаторы предоставляют интерфейс для администратора, который может выполнить его настройку для работы в конкретной сети. Например, есть возможность выбора режима защиты от отказа (в случае работы в паре с резервным коммутатором), объединения нескольких портов в единое направление, настройки приоритетов и резервирования портов и мн. др. Обычно управляемые коммутаторы дороже и используются в емких сетях, с дополнительными требованиями по надежности.

Switch может быть выполнен и в виде небольшой платы на 4 порта и многополочного штатива с возможность интеграции дополнительных устройств и расширения емкости. Также в зависимости от назначения сетевой коммутатор может снабжаться автономным питанием, портами управления и резервирования, охлаждением.

Любой системный администратор рано или поздно сталкивается с задачей построения или модернизации локальной сети предприятия. К такому вопросу следует подходить очень серьезно и основательно, т.к. от этого зависит дальнейшая беззаботная работа.

Как выбрать коммутатор под свои задачи, чтобы потом не покупать новый?

Коммутатор или в простонародье свитч - это сетевое устройство, которое соединяет несколько компьютеров в одну единую локальную сеть. Современные свитчи обладают очень большим рядом функций, которые очень сильно могут облегчить дальнейшую работу админа. От правильного выбора свитчей зависит функционирование всей локальной сети и работа предприятия в целом.

При выборе сетевого оборудования начинающий системный администратор сталкивается с большим количеством непонятных обозначений и поддерживаемых протоколов. Данное руководство написано с целью восполнить этот пробел знаний у начинающих.

Вводная информация

Многие до сих пор не видят разницы между свичом и хабом. Понимая, что тема уже много раз обсуждалась, все же хотелось начать именно с нее.

Для свитчей это правило уже не актуально, т.к. современные свитчи даже начального уровня в ходе работы формируют таблицу коммутации, набирая список MAC-адресов, и согласно нее осуществляют пересылку данных. Каждый свитч, после непродолжительного времени работы, "знает" на каком порту находится каждый компьютер в сети.

При первом включении, таблица коммутации пуста и коммутатор начинает работать в режиме обучения. В режиме обучения работа свича идентична работе хаба: коммутатор, получая поступающие на один порт данные, пересылает их на все остальные порты. В это время коммутатор производит анализ всех проходящих портов и в итоге составляет таблицу коммутации.

Особенности, на которые следует обратить внимание при выборе коммутатора

Чтобы правильно сделать выбор при покупке коммутатора, нужно понимать все обозначения, которые указываются производителем. Покупая даже самое дешевое устройство, можно заметить большой список поддерживаемых стандартов и функций. Каждый производитель сетевого оборудования старается указать в характеристиках как можно больше функций, чтобы тем самым выделить свой продукт среди конкурентов и повысить конечную стоимость.

Распространенные функции коммутаторов:

  • Количество портов . Общее количество портов, к которым можно подключить различные сетевые устройства.

    Количество портов лежит в диапазоне от 5 до 48.

  • Базовая скорость передачи данных . Это скорость, на которой работает каждый порт коммутатора. Обычно указывается несколько скоростей, к примеру, 10/100/1000 Мб/сек . Это говорит о том, что порт умеет работать на всех указанных скоростях. В большинстве случаев коммутатор поддерживает стандарт IEEE 802.3 Nway автоопределение скорости портов.

    При выборе коммутатора следует учитывать характер работы подключенных к нему пользователей.

  • Внутренняя пропускная способность . Этот параметр сам по себе не играет большого значения. Чтобы правильно выбрать коммутатор, на него следует обращать внимание только в паре с суммарной максимальной скоростью всех портов коммутатора (это значение можно посчитать самостоятельно, умножив количество портов на базовую скорость порта). Соотнося эти два значения можно оценить производительность коммутатора в моменты пиковой нагрузки, когда все подключенные пользователи максимально используют возможности сетевого подключения.

    К примеру, Вы используете 16-портовый коммутатор на скорости 100 Мб/сек, имеющий пропускную способность в 1Гб/сек. В моменты пиковой нагрузки 16 портов смогут передавать объем информации равный:

    16x100=1б00(Мб/сек)=1.6(Гб/сек)

    Полученное значение меньше пропускной способности самого коммутатора. Такой коммутатор подойдет в большинстве случаев небольшой организации, где на практике приведенную ситуацию можно встретить крайне редко, но не подойдет для организации, где передаются большие объемы информации.

    Для правильного выбора коммутатора следует учитывать, что в действительности внутренняя пропускная способность не всегда соответствует значению, которое заявлено производителем.

  • Автосогласование между режимами Full-duplex или Half-duplex . В режиме Full-duplex данные передаются в двух направлениях одновременно. При режиме Half-duplex данные могут передаваться только в одну сторону одновременно. Функция автосогласования между режимами позволяет избежать проблем с использованием разных режимов на разных устройствах.
  • Автоопределение типа кабеля MDI/MDI-X . Это функция автоматически определят по какому стандарту был "обжат" кабель витая пара, позволяя работать этим 2 стандартам в одной ЛВС.
  • Стандарт MDI :

    Стандарт MDI-X:

  • Наличие порта Uplink . Порт Uplink предназначен для каскадирования коммутаторов, т.е. объединение двух коммутаторов между собой. Для их соединения использовался перекрестный кабель (Crossover). Сейчас такие порты можно встретить только на старых коммутаторах или на специфическом оборудовании. Грубо говоря, в современных коммутаторах все порты работают как Uplink.
  • Стекирование . Под стекированием коммутаторов понимается объединение нескольких коммутаторов в одно логическое устройство. Стекирование целесообразно производить, когда в итоге требуется получить коммутатор с большим количеством портов (больше 48 портов). Различные производители коммутаторов используют свои фирменные технологии стекирования, к примеру, Cisco использует технологию стекирования StackWise (шина между коммутаторами 32 Гбит/сек) и StackWise Plus (шина между коммутаторами 64 Гбит/сек).

    При выборе коммутатора следует отдавать предпочтение устройствам поддерживающим стекирование, т.к. в будущем эта функция может оказаться полезной.

  • Возможность установки в стойку . Это означает, что такой коммутатор можно установить в стойку или в коммутационный шкаф. Наибольшее распространение получили 19 дюймовые шкафы и стойки, которые стали для современного сетевого оборудования неписанным стандартом.

    Большинство современных устройств имеют такую поддержку, поэтому при выборе коммутатора не стоит акцентировать на этом большого внимания.

  • Количество слотов расширения . Некоторые коммутаторы имеют несколько слотов расширения, позволяющие разместить дополнительные интерфейсы. В качестве дополнительных интерфейсов выступают гигабитные модули, использующие витую пару, и оптические интерфейсы, способные передавать данные по оптоволоконному кабелю.
  • Размер таблицы MAC-адресов . Это размер коммутационной таблицы, в которой соотносятся встречаемые MAC-адреса с определенным портом коммутатора. При нехватке места в коммутационной таблице происходит затирание долго не используемых MAC-адерсов. Если количество компьютеров в сети много больше размера таблицы, то происходит заметное снижение производительности коммутатора, т.к. при каждом новом MAC-адресе происходит поиск компьютера и внесение отметки в таблицу.

    При выборе коммутатора следует прикинуть примерное количество компьютеров и размер таблицы MAC-адресов коммутатора.

  • Flow Control (Управление потоком). Управление потоком IEEE 802.3x обеспечивает защиту от потерь пакетов при их передаче по сети. К примеру, коммутатор во время пиковых нагрузок, не справляясь с потоком данных, отсылает отправляющему устройству сигнал о переполнении буфера и приостанавливает получение данных. Отправляющее устройство, получая такой сигнал, останавливает передачу данных до тех пор, пока не последует положительного ответа от коммутатора о возобновлении процесса. Таким образом два устройства как бы "договариваются" между собой когда передавать данные, а когда нет.

    Так как эта функция присутствует почти во всех современных коммутаторах, то при выборе коммутатора на ней не следует акцентировать особого внимания.

  • Jumbo Frame . Наличие этой функции позволяет коммутатору работать с более большим размером пакета, чем это оговорено в стандарте Ethernet.

    После приема каждого пакета тратится некоторое время на его обработку. При использовании увеличенного размера пакета по технологии Jumbo Frame, можно существенно сэкономить на времени обработки пакета в сетях, где используются скорости передачи данных от 1 Гб/сек и выше. При меньшей скорости большого выигрыша ждать не стоит.

    Технология Jumbo Frame работает только между двумя устройствами, которые оба ее поддерживают.

    При подборе коммутатора на этой функции не стоит заострять внимание, т.к. она присутствует почти во всех устройствах.

  • Power over Ethernet (PoE) . Эта технология передачи электрического тока для питания коммутатора по неиспользуемым проводам витой пары. Стандарт IEEE 802.af.
  • Встроенная грозозащита . Некоторые производители встраивают в свои коммутаторы технологию защиты от гроз. Такой коммутатор следует обязательно заземлить, иначе смысл этой дополнительной функции отпадает.

Читайте о новинках железа, новости компьютерных компаний и будите всегда в курсе последних достижений.

Какие коммутаторы бывают?

Помимо того, что все существующие коммутаторы различаются количеством портов (5, 8, 16, 24 и 48 портов и т.д.) и скоростью передачи данных (100Мб/сек, 1Гб/сек и 10Гб/сек и т.д.), коммутаторы можно так же разделить на:

  1. Неуправляемые свичи - это простые автономные устройства, которые управляют передачей данных самостоятельно и не имеющие инструментов ручного управления. Некоторые модели неуправляемых свичей имеют встроенные инструменты мониторинга (например некоторые свичи Compex).

    Такие коммутаторы получили наибольшее распространение в "домашних" ЛВС и малых предприятиях, основным плюсом которых можно назвать низкую цену и автономную работу, без вмешательства человека.

    Минусами у неуправляемых коммутаторов является отсутствие инструментов управления и малая внутренняя производительность. Поэтому в больших сетях предприятий неуправляемые коммутаторы использовать не разумно, так как администрирование такой сети требует огромных человеческих усилий и накладывает ряд существенных ограничений.

  2. Управляемые свичи - это более продвинутые устройства, которые также работают в автоматическом режиме, но помимо этого имеют ручное управление. Ручное управление позволяет очень гибко настроить работу коммутатора и облегчить жизнь системного администратора.

    Основным минусом управляемых коммутаторов является цена, которая зависит от возможностей самого коммутатора и его производительности.

Абсолютно все коммутаторы можно разделить по уровням. Чем выше уровень, тем сложней устройство, а значит и дороже. Уровень коммутатора определяется слоем на котором он работает по сетевой модели OSI .

Для правильного выбора коммутатора Вам потребуется определиться на каком сетевом уровне необходимо администрировать ЛВС.

Разделение коммутаторов по уровням:

  1. Коммутатор 1 уровня (Layer 1). Сюда относятся все устройства, которые работают на 1 уровне сетевой модели OSI - физическом уровне . К таким устройствам относятся повторители, хабы и другие устройства, которые не работают с данными вообще, а работают с сигналами. Эти устройства передают информацию, словно льют воду. Если есть вода, то переливают ее дальше, нет воды, то ждут. Такие устройства уже давно не производят и найти их довольно сложно.
  2. Коммутатор 2 уровня (Layer 2). Сюда относятся все устройства, которые работают на 2 уровне сетевой модели OSI - канальном уровне . К таким устройствам можно отнести все неуправляемые коммутаторы и часть управляемых.

    Коммутаторы 2 уровня работают с данными ни как с непрерывным потоком информации (коммутаторы 1 уровня), а как с отдельными порциями информации - кадрами (frame или жарг. фреймами ). Умеют анализировать получаемые кадры и работать с MAC-адресами устройств отправителей и получателей кадра. Такие коммутаторы "не понимают" IP-адреса компьютеров, для них все устройства имеют названия в виде MAC-адресов.

    Коммутаторы 2 уровня составляют коммутационные таблицы, в которых соотносят MAC-адреса встречающихся сетевых устройств с конкретными портами коммутатора.

    Коммутаторы 2 уровня поддерживают протоколы:


  3. Коммутатор 3 уровня (Layer 3). Сюда относятся все устройства, которые работают на 3 уровне сетевой модели OSI - сетевом уровне . К таким устройствам относятся все маршрутизаторы, часть управляемых коммутаторов, а так же все устройства, которые умеют работать с различными сетевыми протоколами: IPv4, IPv6, IPX, IPsec и т.д. Коммутаторы 3 уровня целесообразнее отнести уже не к разряду коммутаторов, а к разряду маршрутизаторов, так как эти устройства уже полноценно могут маршрутизировать, проходящий трафик, между разными сетями. Коммутаторы 3 уровня полностью поддерживают все функции и стандарты коммутаторов 2 уровня. С сетевыми устройствами могут работать по IP-адресам. Коммутатор 3 уровня поддерживает установку различных соединений: pptp, pppoe, vpn и т.д.
  4. Коммутатор 4 уровня (Layer 4). Сюда относятся все устройства, которые работают на 4 уровне сетевой модели OSI - транспортном уровне . К таким устройствам относятся более продвинутые маршрутизаторы, которые умеют работать уже с приложениями. Коммутаторы 4 уровня используют информацию, которая содержится в заголовках пакетов и относится к уровню 3 и 4 стека протоколов, такую как IP-адреса источника и приемника, биты SYN/FIN, отмечающие начало и конец прикладных сеансов, а также номера портов TCP/UDP для идентификации принадлежности трафика к различным приложениям. На основании этой информации, коммутаторы уровня 4 могут принимать интеллектуальные решения о перенаправлении трафика того или иного сеанса.

Чтобы правильно подобрать коммутатор Вам нужно представлять всю топологию будущей сети, рассчитать примерное количество пользователей, выбрать скорость передачи данных для каждого участка сети и уже под конкретную задачу начинать подбирать оборудование.

Управление коммутаторами

Интеллектуальными коммутаторами можно управлять различными способами:

  • через SSH-доступ . Подключение к управляемому коммутатору осуществляется по защищенному протоколу SSH, применяя различные клиенты (putty, gSTP и т.д.). Настройка происходит через командную строку коммутатора.
  • через Telnet-доступ к консольному порту коммутатора. Подключение к управляемому коммутатору осуществляется по протоколу Telnet. В результате мы получаем доступ к командной строке коммутатора. Применение такого доступа оправданно только при первоначальной настройки, т. к. Telnet является незащищенным каналом передачи данных.
  • через Web-интерфейс . Настройка производится через WEB-браузер. В большинстве случаев настройка через Web-интерфейс не дает воспользоваться всеми функциями сетевого оборудования, которые доступны в полном объеме только в режиме командной строки.
  • через протокол SNMP . SNMP - это протокол простого управления сетями.

    Администратор сети может контролировать и настраивать сразу несколько сетевых устройств со своего компьютера. Благодаря унификации и стандартизации этого протокола появляется возможность централизованно проверять и настраивать все основные компоненты сети.

Чтобы правильно выбрать управляемый коммутатор стоит обратить внимание на устройства, которые имеют SSH-доступ и протокол SNMP. Несомненно Web-интерфейс облегчает первоначальную настройку коммутатора, но практически всегда имеет меньшее количество функций, чем командная строка, поэтому его наличие приветствуется, но не является обязательным.

Случайные 7 статей.