Различия между компьютерным и обычным электролитическим конденсаторами. Конденсаторы постоянной емкости

В электрической цепи каждого прибора есть такой элемент, как конденсатор. Это он служит для наполнения энергией, которая нужна для правильной и бесперебойной работы оборудования.

Что такое конденсатор

Каждый конденсатор - это устройство, обладающее набором технических параметров, которые стоит рассмотреть детально.

Конденсаторы можно встретить во многих отраслях электротехники. Их непосредственная область применения:

  • Создание цепей, колебательных контуров.
  • Получение импульса с большим количеством мощности.
  • В промышленной электротехнике.
  • В изготовлении датчиков.
  • Усовершенствование работы защитных устройств.

Емкость конденсатора

Для каждого конденсатора главный параметр - это его емкость. У каждого устройства она своя и измеряется она в Фарадах. В основе электроники и радиотехники используют конденсаторы с миллионной долей Фарад. Чтобы узнать номинальную емкость устройства, достаточно просмотреть его корпус, на котором имеется вся информация. Показания емкости могут изменяться из-за следующих параметров:

  • Общая площадь всех обкладок.
  • Расстояние между ними.
  • Материал, из которого сделан диэлектрик.
  • Температура окружающей среды.

Наряду с номинальной емкостью существует еще и реальная. Ее значение намного ниже предыдущей. По реальной емкости можно определить основные электрические параметры. Емкость определяют от заряда обкладки и ее напряжения. Максимальная емкость может достигать нескольких десятков Фарад. Конденсатор может также быть охарактеризован удельной емкостью. Это отношение емкости и объема диэлектрика. Маленькая толщина диэлектрика обеспечивает большое значение удельной емкости. Каждый конденсатор может изменять свою емкость, и делятся они на следующие типы:

  • Постоянные конденсаторы - они практически не меняют свою емкость.
  • Переменные конденсаторы - значение емкости изменяется в ходе работы оборудования.
  • Подстроечные конденсаторы - изменяют свою емкость от регулировки аппаратуры.

Напряжение конденсатора

Напряжение считается еще одним из важных параметров. Чтобы конденсатор выполнял свои функции в полном объеме, нужно знать точное показание напряжения. Оно указывается на корпусе устройства. Номинальное напряжение напрямую зависит от сложности конструкции конденсатора и основных свойств материалов, используемых при его изготовлении. Напряжение, подаваемое на конденсатор, должно полностью совпадать с номинальным. Многие устройства при работе нагреваются, в таком случае напряжение понижается. Часто из-за большой разницы в напряжениях конденсатор может перегореть или взорваться. Также это происходит из-за утечки или повышения сопротивления. Для безопасной работы конденсатора его оснащают защитным клапаном и насечкой на корпусе. Как только происходит увеличение давления, клапан автоматически открывается, и по намеченной насечке корпус ломается. Из конденсатора в таком случае электролит выходит в виде газа и не происходит никакого взрыва.

Допуски конденсаторов

Самый простой конденсатор - это два электрода, сделанные в форме пластин, которые разделяются тонкими изоляторами. Каждое устройство имеет отклонение, которое допустимо при его работе. Эту величину также можно узнать по маркировке устройства. Его допуск измеряется и указывается в процентном соотношении и может лежать в пределах от 20 до 30%. Для электротехники, которая должна работать с высокой точностью, можно использовать конденсаторы с маленьким значением допуска, не больше 1%.
Приведенные параметры являются основными для работы конденсатора. Зная их значения, можно использовать конденсаторы для самостоятельной сборки аппаратов или машин.

Виды конденсаторов

Существует несколько основных видов конденсаторов, которые используют в различной технике. Итак, стоит рассмотреть каждый вид, его описания и свойства:


У каждого конденсатора свое предназначение, поэтому их дополнительно классифицируют на общие и специальные. Общие конденсаторы применяют в любых видах и классах аппаратуры. В основном это низковольтные устройства. Специальные конденсаторы - это все остальные виды устройств, которые являются высоковольтными, импульсными, пусковыми и другими различными видами.

Особенности плоского конденсатора

Так как конденсатор - это устройство, предназначенное для накопления напряжения и его дальнейшего распределения, поэтому нужно выбирать его с хорошей электроемкостью и «пробивным» напряжением. Одним из таких является плоский конденсатор. Выпускается он в виде двух тонких пластин определенной площади, которые расположены на близком расстоянии друг от друга. Плоский конденсатор обладает двумя зарядами: положительным и отрицательным.

Пластины плоского конденсатора между собой имеют однородное электрическое поле. Этот тип устройства не вступает во взаимодействие с другими приборами. Пластина конденсатора способна усиливать электрическое поле.

Правильный заряд конденсатора

Он является хранилищем для электрических зарядов, которые должны постоянно заряжаться. Заряд конденсатора происходит за счет подключения его к сети. Чтобы зарядить устройство, нужно правильно подсоединить его. Для этого берут цепь, которая состоит из разряженного конденсатора с емкостью, резистором, и подключают к питанию с постоянным напряжением.

Разряжается конденсатор по следующему типу: замыкают ключ, и пластины его соединяются между собой. В это время конденсатор разряжается, и между его пластинами исчезает электрическое поле. Если конденсатор разряжается через провода, то на это уйдет много времени, так как в них накапливается много энергии.

Зачем нужен контур конденсатора

В контурах находятся конденсаторы, которые изготавливаются из пары пластин. Для их изготовления берут алюминий или латунь. Хорошая работа радиотехники зависит от правильной настройки контуров. Самая обычная цепь контура состоит из одной катушки и конденсатора, которые между собой замкнуты в электрическую цепь. Есть условия, которые влияют на появление колебаний, поэтому чаще всего контур конденсатора называют колебательным.

Заключение

Конденсатор - это пассивное устройство в электрической цепи, которое используется в качестве емкости для хранения электричества. Чтобы средство для накопления энергии в электрических цепях, именуемое конденсатором, проработало долго, нужно следовать указанным условиям, которые прописаны на корпусе устройства. Область применения широкая. Используют конденсаторы в радиоэлектронике и различной аппаратуре. Подразделяются устройства на много разных видов и выпускаются многообразной конструкцией. Конденсаторы могут соединяться двумя видами: параллельным и последовательным. Также на корпусе устройства есть информация о емкости, напряжении, допуске и его типе. Стоит запомнить, что при подключении конденсатора стоит соблюдать полярность. В противном случае устройство быстро выйдет из строя.

Все виды конденсаторов имеют одинаковое основное устройство, оно состоит из двух токопроводящих пластин (обкладок), на которых концентрируются электрические заряды противоположных полюсов, и слоя изоляционного материала между ними.

Применяемые материалы и величина обкладок с разными параметрами слоя диэлектрика влияют на свойства конденсатора.

Классификация

Конденсаторы делятся на виды по следующим факторам.

Назначению
  • Общего назначения . Это популярный вид конденсаторов, которые используют в электронике. К ним не предъявляются особые требования.
  • Специальные . Такие конденсаторы обладают повышенной надежностью при заданном напряжении и других параметров при запуске электродвигателей и специального оборудования.
Изменению емкости
  • Постоянной емкости . Не имеют возможности изменения емкости.
  • Переменной емкости . Они могут изменять значение емкости при воздействии на них температуры, напряжения, регулировки положения обкладок. К конденсаторам переменной емкости относятся:
    Подстроечные конденсаторы не предназначены для постоянной работы, связанной с быстрой настройкой емкости. Они служат только для одноразовой наладки оборудования и периодической подстройки емкости.
    Нелинейные конденсаторы изменяют свою емкость от воздействия температуры и напряжения по нелинейному графику. Конденсаторы, емкость которых зависит от напряжения, называются варикондами , от температуры – термоконденсаторами .
Способу защиты
  • Незащищенные работают в обычных условиях, не имеют никакой защиты.
  • Защищенные конденсаторы выполнены в защищенном корпусе, поэтому могут работать при высокой влажности.
  • Неизолированные имеют открытый корпус и не имеют изоляции от возможного соприкосновения с различными элементами схемы.
  • Изолированные конденсаторы выполнены в закрытом корпусе.
  • Уплотненные имеют корпус, заполненный специальными материалами.
  • Герметизированные имеют герметичный корпус, полностью изолированы от внешней среды.
Виду монтажа
  • Навесные делятся на несколько видов с;
    — ленточными выводами;
    — опорным винтом;
    — круглыми электродами;
    — радиальными или аксиальными выводами.
  • Конденсаторы с винтовыми выводами оснащены резьбой для соединения со схемой, применяются в силовых цепях. Подобные выводы проще фиксировать на охлаждающих радиаторах для снижения тепловых нагрузок.
  • Конденсаторы с защелкивающимися выводами являются новой разработкой, при монтаже на плату они защелкиваются. Это очень удобно, так как нет необходимости использовать пайку.
  • Конденсаторы, предназначенные для поверхностной установки , имеют особенность конструкции: части корпуса являются выводами.
  • Емкости для печатной установки изготавливают с круглыми выводами для расположения на плате.
По материалу диэлектрика

Сопротивление изоляции между пластинами зависит от параметров изоляционного материала. Также от этого зависят допустимые потери и другие параметры. Рассмотрим виды конденсаторов, которые имеют различные материалы диэлектрика.

  • Конденсаторы с неорганическим изолятором из стеклокерамики, стеклоэмали, слюды. На диэлектрический материал нанесено металлическое напыление или фольга.
  • Низкочастотные конденсаторы включают в себя изоляционный материал в виде слабополярных органических пленок, у которых диэлектрические потери зависят от частоты тока.
  • Высокочастотные модели содержат пленки из фторопласта и полистирола.
  • Импульсные модели высокого напряжения имеют изолятор из комбинированных материалов.
  • В конденсаторах постоянного напряжени я в качестве диэлектрика используется политетрафторэлитен, бумага, либо комбинированный материал.
  • Низковольтные модели работают при напряжении до 1,6 кВ.
  • Высоковольтные модели функционируют при напряжении свыше 1,6 кВ.
  • Дозиметрические конденсаторы служат для работы с малым током, имеют незначительный саморазряд и большое сопротивление изоляции.
  • Помехоподавляющие емкости уменьшают помехи, возникающие от электромагнитного поля, имеют низкую индуктивность.
  • Емкости с органическим изолятором выполнены с применением конденсаторной бумаги и различных пленок.
  • Вакуумные, воздушные, газонаполненные конденсаторы обладают малыми диэлектрическими потерями, поэтому их применяют в аппаратуре с высокой частотой .
Форме пластин
  • Сферические.
  • Плоские.
  • Цилиндрические.
Полярности
  • Электролитические конденсаторы называют оксидными. При их подключении обязательным является соблюдение полярности выводов. Электролитические конденсаторы содержат диэлектрик, состоящий из оксидного слоя, образованный электрохимическим способом на аноде из тантала или алюминия. Катодом является электролит в жидком или гелеобразном виде.
  • Неполярные конденсаторы могут включаться в схему без соблюдения полярности.

Конструктивные особенности

Рассмотренные выше виды конденсаторов далеко не все имеют большую популярность. Поэтому подробнее рассмотрим конструктивные особенности наиболее применяемых видов конденсаторов.

Воздушные виды конденсаторов

В качестве диэлектрика используется воздух. Такие виды конденсаторов хорошо зарекомендовали себя при работе на высокой частоте, в качестве настроечных конденсаторов с изменяемой емкостью. Подвижная пластина конденсатора является ротором, а неподвижную называют статором. При смещении пластин друг относительно друга, изменяется общая площадь пересечения этих пластин и емкость конденсатора. Раньше такие конденсаторы были очень популярны в радиоприемниках для настраивания радиостанций.

Керамические

Такие конденсаторы изготавливают в виде одной или нескольких пластин, выполненных из специальной керамики. Металлические обкладки изготавливают путем напыления слоя металла на керамическую пластину, затем соединяют с выводами. Материал керамики может применяться с различными свойствами.

Их разнообразие обуславливается широким интервалом диэлектрической проницаемости. Она может достигать нескольких десятков тысяч фарад на метр, и имеется только у такого вида емкостей. Такая особенность керамических емкостей позволяет создавать большие значения емкостей, которые сопоставимы с электролитическими конденсаторами, но для них не важна полярность подключения.

Керамика имеет нелинейную сложную зависимость свойств от напряжения, частоты и температуры. Из-за небольшого размера корпуса эти виды конденсаторов применяются в компактных устройствах.

Пленочные

В таких моделях в качестве диэлектрика выступает пластиковая пленка: поликарбонат, полипропилен или полиэстер.

Обкладки конденсатора напыляют или выполняют в виде фольги. Новым материалом служит полифениленсульфид.

Параметры пленочных конденсаторов

  • Применяются для резонансных цепей.
  • Наименьший ток утечки.
  • Малая емкость.
  • Высокая прочность.
  • Выдерживают большой ток.
  • Устойчивы к электрическому пробою (выдерживают большое напряжение).
  • Наибольшая эксплуатационная температура до 125 градусов.
Полимерные

Эти модели имеют отличие от электролитических емкостей наличием полимерного материала, вместо оксидной пленки между обкладками. Они не подвергаются утечке заряда и раздуванию.

Параметры полимера обеспечивают значительный импульсный ток, постоянный температурный коэффициент, малое сопротивление. Полимерные модели способны заменить электролитические модели в фильтрах импульсных источников и других устройствах.

Электролитические

От бумажных моделей электролитические конденсаторы отличаются материалом диэлектрика, которым является оксид металла, созданный электрохимическим методом на плюсовой обкладке.

Вторая пластина выполнена из сухого или жидкого электролита. Электроды обычно выполнены из тантала или алюминия. Все электролитические емкости считаются поляризованными, и способны нормально работать только на постоянном напряжении при определенной полярности.

Если не соблюдать полярность, то может произойти необратимый химический процесс внутри емкости, которая приведет к выходу его из строя, или даже взрыву, так как будет выделяться газ.

К электролитическим можно отнести суперконденсаторы, которые называют ионисторами. Они обладают очень большой емкостью, достигающей тысячи Фарад.

Танталовые электролитические

Устройство танталовых электролитов имеет особенность в электроде из тантала. Диэлектрик состоит из пентаоксида тантала.

Параметры

  • Незначительный ток утечки, в отличие от алюминиевых видов.
  • Малые размеры.
  • Невосприимчивость к внешним воздействиям.
  • Малое активное сопротивление.
  • Высокая чувствительность при ошибочном подключении полюсов.
Алюминиевые электролитические

Положительным выводом является электрод из алюминия. В качестве диэлектрика использован триоксид алюминия. Они применяются в импульсных блоках и являются выходным фильтром.

Параметры

  • Большая емкость.
  • Корректная работа только на низких частотах.
  • Повышенное соотношение емкости и размера: конденсаторы других видов при одной емкости имели бы большие размеры.
  • Большая утечка тока.
  • Низкая индуктивность.
Бумажные

Диэлектриком между фольгированными пластинами служит особая конденсаторная бумага. В электронных устройствах бумажные виды конденсаторов обычно работают в цепях высокой и низкой частоты.

Металлобумажные конденсаторы обладают герметичностью, высокой удельной емкостью, качественной электрической изоляцией. В их конструкции применяется вакуумное металлическое напыление на бумажный диэлектрик, вместо фольги.

Бумажные конденсаторы не обладают высокой механической прочностью. В связи с этим его внутренности располагают в металлическом корпусе, который защищает его устройство.

Конденсатором называется элемент электрической цепи, служащий в качестве накопителя заряда.

Областей применения этого устройства сейчас много, чем и обусловлен их большой ассортимент. Они различаются по материалам, из которых изготовлены, назначению, диапазону основного параметра. Но главной характеристикой конденсатора является его емкость.

Принцип работы конденсатора

Конструкция

На схемах конденсатор обозначается в виде двух параллельных линий, не связанных между собой:

Это соответствует его простейшей конструкции - двум пластинам (обкладкам), разделенным диэлектриком. Фактическое исполнение этого изделия чаще всего представляет собой завернутые в рулон обкладки с прослойкой диэлектрика или иные причудливые формы, но суть остается той же самой.

Электрическая ёмкость – способность проводника накапливать электрические заряды. Чем больше заряд вмещает проводник при данной разности потенциалов, тем больше ёмкость. Зависимость между зарядом Q и потенциалом φ выражается формулой:

где Q — заряд в кулонах (Кл), φ — потенциал в вольтах (В).

Емкость измеряется в фарадах (Ф), что вы помните еще с уроков физики. На практике чаще встречаются более мелкие единицы: миллифарад (мФ), микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ).

Накопительная способность зависит от геометрических параметров проводника, диэлектрической проницаемости среды, где он находится. Так, для сферы из проводящего материала она будет выражаться формулой:

C=4πεε0R

где ε0-8,854·10^−12 Ф/м, электрическая постоянная, а ε — диэлектрическая проницаемость среды (табличная величина для каждого вещества).

В реальной жизни нам чаще приходится иметь дело не с одним проводником, а с системами таковых. Так, в обычном плоском конденсаторе емкость будет прямо пропорциональна площади пластин и обратно - расстоянию между ними:

C=εε0S/d

ε здесь - диэлектрическая проницаемость прокладки между пластинами.

Емкость параллельных и последовательных систем

Параллельное соединение емкостей представляет собой один большой конденсатор с тем же слоем диэлектрика и суммарной площадью пластин, поэтому общая емкость системы представляет собой сумму таковых у каждого из элементов. Напряжение при параллельном соединении будет одним и тем же, а заряд распределится между элементами схемы.​

C=C1+C2+C3

Последовательное соединение конденсаторов характеризуется общим зарядом и распределенным напряжением между элементами. Поэтому суммируется не емкость, а обратная ей величина:

1/C=1/С1+1/С2+1/С3

Из формулы емкости одиночного конденсатора можно вывести, что при одинаковых элементах, соединенных последовательно, их можно представить в виде одного большого с той же площадью обкладки, но с суммарной толщиной диэлектрика.

Реактивное сопротивление

Конденсатор не может проводить постоянный ток, что видно из его конструкции. В такой цепи он может только заряжаться. Зато в цепях переменного тока он прекрасно работает, постоянно перезаряжаясь. Если не ограничения, исходящие из свойств диэлектрика (его можно пробить при превышении предела напряжения), этот элемент заряжался бы бесконечно (т. н. идеальный конденсатор, что-то вроде абсолютно черного тела и идеального газа) в цепи постоянного тока, а ток через него проходить не будет. Проще говоря, сопротивление конденсатора в цепи постоянного тока бесконечно.

При переменном токе ситуация иная: чем выше частота в цепи, тем меньше сопротивление элемента. Такое сопротивление называется реактивным, и оно обратно пропорционально частоте и емкости:

Z=1/2πfC

где f — частота в герцах.

Накопитель энергии

Энергия, запасенная заряженным конденсатором, может быть выражена формулой:

E=(CU^2)/2=(q^2)/2C

где U — напряжение между обкладками, а q — накопленный заряд.

Конденсатор в колебательном контуре

В замкнутом контуре, содержащем катушку и конденсатор, может быть сгенерирован переменный ток.

После зарядки конденсатора он начнет саморазряжаться, давая возрастающий по силе ток. Энергия разряженного конденсатора станет равной нулю, зато магнитная энергия катушки - максимальной. Изменение величины тока вызывает ЭДС самоиндукции катушки, и она по инерции пропустит ток в сторону второй обкладки, пока та полностью не зарядится. В идеальном случае такие колебания бесконечны, а в реальности они быстро затухают. Частота колебаний зависит от параметров как катушки, так и конденсатора:

где L — индуктивность катушки.

Конденсатор может обладать собственной индуктивностью, что можно наблюдать при повышении частоты тока в цепи. В идеальном случае эта величина незначительна, и ей можно пренебречь, но в реальности, когда обкладки представляют собой свернутые пластинки, не считаться с этим параметром нельзя, особенно если речь идет о высоких частотах. В таких случаях конденсатор совмещает в себе две функции, и представляет собой своеобразный колебательный контур с собственной резонансной частотой.

Эксплуатационные характеристики

Помимо указанных выше емкости, собственной индуктивности и энергоемкости, реальные конденсаторы (а не идеальные) обладают еще рядом свойств, которые нужно учитывать при выборе этого элемента для цепи. К ним относятся:

Чтобы понять, откуда берутся потери, необходимо разъяснить, что представляют собой графики синусоидальных тока и напряжения в этом элементе. Когда конденсатор заряжен максимально, ток в его обкладках равен нулю. Соответственно, когда ток максимален, напряжение отсутствует. То есть напряжение и ток сдвинуты по фазе на угол 90 градусов. В идеале конденсатор обладает только реактивной мощностью:

Q=UIsin 90

В реальности же обкладки конденсатора обладают собственным сопротивлением, а часть энергии расходуется на нагрев диэлектрика, что обуславливает ее потери. Чаще всего они незначительны, но иногда ими пренебрегать нельзя. Основной характеристикой этого явления служит тангенс угла диэлектрических потерь, представляющий собой отношение активной мощности (даваемой малыми потерями в диэлектрике) и реактивной. Измерить эту величину можно теоретически, представив реальную емкость в виде эквивалентной схемы замещения - параллельной или последовательной.

Определение тангенса угла диэлектрических потерь

При параллельном соединении величина потерь определяется отношением токов:

tgδ = Ir/Ic = 1/(ωCR)

В случае последовательного соединения угол вычисляется соотношением напряжений:

tgδ = Ur/Uc = ωCR

В реальности для замеров tgδ пользуются прибором, собранным по мостовой схеме. Его применяют для диагностики потерь в изоляции у высоковольтного оборудования. С помощью измерительных мостов можно измерять и другие параметры сетей.

Номинальное напряжение

Этот параметр указывается на маркировке. Он показывает предельную величину напряжения, которое может быть подано на обкладки. Превышение номинала может привести к пробою конденсатора и выходу его из строя. Зависит этот параметр от свойств диэлектрика и его толщины.

Полярность

Некоторые конденсаторы имеют полярность, то есть в схему его необходимо подключать строго определенным образом. Связано это с тем, что в качестве одной из обкладок используется какой-либо электролит, а диэлектриком служит оксидная пленка на другом электроде. При изменении полярности электролит просто разрушает пленку и конденсатор перестает работать.

Температурный коэффициент емкости

Он выражается отношением ΔC/CΔT где ΔT — изменение температуры окружающей среды. Чаще всего эта зависимость линейна и незначительна, но для конденсаторов, работающих в агрессивных условиях, ТКЕ указывается в виде графика.

Выход конденсатора из строя обусловлен двумя основными причинами - пробоем и перегревом. И если в случае пробоя некоторые их виды способны к самовосстановлению, то перегрев со временем приводит к разрушению.

Перегрев обусловлен как внешними причинами (нагреванием соседних элементов схемы), так и внутренними, в частности, последовательным эквивалентным сопротивлением обкладок. В электролитических конденсаторах он приводит к испарению электролита, а в оксиднополупроводниковых - к пробою и химической реакции между танталом и оксидом марганца.

Опасность разрушения в том, что часто оно происходит с вероятностью взрыва корпуса.

Техническое исполнение конденсаторов

Классифицировать конденсаторы можно по нескольким группам. Так, в зависимости от возможности регулировать емкость их разделяют на постоянные, переменные и подстроечные. По своей форме они могут быть цилиндрическими, сферическими и плоскими. Можно делить их по назначению. Но самой распространенной классификацией является таковая по типу диэлектрика.

Бумажные конденсаторы

В качестве диэлектрика используется бумага, очень часто — промасленная. Как правило, такие конденсаторы отличает большой размер, но были варианты и в небольшом исполнении, без промасливания. Используются в качестве стабилизирующих и накопительных устройств, а из бытовой электроники постепенно вытесняются более современными пленочными моделями.

При отсутствии промасливания имеют существенный недостаток - реагируют на влажность воздуха даже при герметичной упаковке. Промокшая бумага увеличивает энергопотери.

Диэлектрик в виде органических пленок

Пленки могут быть выполнены из органических полимеров, таких как:

  • полиэтилентерифталат;
  • полиамид;
  • поликарбонат;
  • полисульфон;
  • полипропилен;
  • полистирол;
  • фторопласт (политетрафторэтилен).

По сравнению с предыдущими, такие конденсаторы имеют более компактные размеры, не увеличивают диэлектрические потери при увеличении влажности, но многие из них подвергаются риску выхода из строя при перегреве, а те, что этого недостатка лишены, отличаются более высокой стоимостью.

Твердый неорганический диэлектрик

Это может быть слюда, стекло и керамика.

Преимуществом этих конденсаторов считается их стабильность и линейность зависимости емкости от температуры, приложенного напряжения, а у некоторых - даже от радиации. Но иногда сама такая зависимость становится проблемой, и чем она менее выражена, тем дороже изделие.

Оксидный диэлектрик

С ним выпускаются алюминиевые, твердотельные и танталовые конденсаторы. Они имеют полярность, поэтому выходят из строя при неправильном подключении и превышении номинала напряжения. Но при этом они обладают хорошей емкостью, компактны и стабильны в работе. При правильной эксплуатации могут работать около 50 тыс. часов.

Вакуум

Такие устройства представляют собой стеклянную или керамическую колбу с двумя электродами, откуда выкачан воздух. В них практически отсутствуют потери, но малая емкость и хрупкость ограничивают сферу их применения радиостанциями, где величина емкости не так важна, а вот устойчивость к нагреву имеет принципиальное значение.

Двойной электрический слой

Если посмотреть, для чего нужен конденсатор, то можно понять, что этот тип - не совсем он. Скорее, это дополнительный или резервный источник питания, в качестве чего они и используются. Одни категория таких устройств - ионисторы - содержат в себе активированный уголь и слой электролита, другие работают на ионах лития. Емкость этих приборов может составлять до сотен фарад. К их недостаткам можно отнести высокую стоимость и активное сопротивление с токами утечки.

Каким бы ни был конденсатор, есть два обязательным параметра, которые должны быть отражены в маркировке - это его емкость и номинальное напряжение.

Помимо этого, на большинстве из них существует цифро-буквенное обозначение его характеристик. В соответствии с российскими стандартами конденсаторы маркируются четырьмя знаками.

Первая буква К означает «конденсатор», следующая цифра - вид диэлектрика, далее следует указатель назначения в виде буквы; последний значок может означать как тип конструкции, так и номер разработки, это уже зависит от завода-изготовителя. Третий пункт часто пропускается. Используется такая маркировка на достаточно крупных изделиях, где ее можно разместить. По ГОСТ расшифровка будет выглядеть так:

Первые буквы:

  1. К - конденсатор постоянной емкости.
  2. КТ - подстроечник.
  3. КП - конденсатор переменной емкости.

Вторая группа - тип диэлектрика:

На маленьких конденсаторах всего этого не разместить, поэтому там применяется сокращенная маркировка, которая с непривычки может даже потребовать калькулятора, а иногда - лупу. В этой маркировке зашифрованы емкость, номинал напряжения и отклонения от основного параметра. Остальные параметры наносить нет смысла: это, как правило, керамические конденсаторы.

Маркировка керамических конденсаторов

Иногда с ними все просто - емкость отмечена числом и единицами: pF - пикофарад, nF - нанофарад, μF — микрофарад, mF - миллифарад. То есть, надпись 100nF можно читать прямо. Номинал, соответственно, числом и буквой V. Но иногда не умещается и это, потому применяют сокращения. Так, часто емкость умещается в трех цифрах (103, 109 и т. д.), где последняя означает число нулей, а первые две - емкость в пикофарадах. Если в конце стоит цифра 9, значит, нулей нет, а между первыми двумя ставят запятую. При цифре 8 на конце запятую переносят еще на один знак назад.

Например, обозначение 109 расшифровывается как 1 пикофарад, а 100–10 пикофарад; 681–680 пикофарад, или 0,68 нанофарад, а 104- 100 тыс. пФ или 100нФ

Часто можно встретить первую букву единицы измерения в качестве запятой: p50–0,5 пФ, 1n5–1,5 нФ, 15μ – 15 мкФ, 15m – 15 мФ. Иногда вместо p пишется R.

После трех цифр может стоять буква, означающая разброс параметра емкости:

Если вы высчитываете характеристику цепи в единицах СИ, то для того, чтобы найти емкость в фарадах, необходимо помнить показатели степеней числа 10:

  1. -3 — миллифарады;
  2. -6 — микрофарады;
  3. -9 — нанофарады;
  4. -12 — пикофарады.

Таким образом, 01 пФ - это 0,1 *10^-12 Ф.

На устройствах SMD емкость в пикофарадах обозначает буква, а цифра после нее - степень 10, на которую надо умножить это значение.

буква C буква C буква C буква C
A 1 J 2,2 S 4,7 a 2,5
B 1,1 K 2,4 T 5,1 b 3,5
C 1,2 L 2,7 U 5,6 d 4
D 1,3 M 3 V 6,2 e 4,5
E 1,5 N 3,3 W 6,8 f 5
F 1,6 P 3,6 X 7,5 m 6
G 1,8 Q 3,9 Y 8,2 n 7
Y 2 R 4,3 Z 9,1 t 8

Номинальное рабочее напряжение таким же образом может маркироваться буквой, если полностью его написать проблематично. В России принят следующий стандарт буквенного обозначения номинала:

буква V буква V
I 1 K 63
R 1,6 L 80
M 2,5 N 100
A 3,2 P 125
C 4 Q 160
B 6,3 Z 200
D 10 W 250
E 16 X 315
F 20 T 350
G 25 Y 400
H 32 U 450
S 40 V 500
J 50

Несмотря на списки и таблицы, лучше все-таки изучить кодировку конкретного производителя - в разных странах они могут отличаться.

К некоторым конденсаторам прилагается более развернутое описание их характеристик.






На сегодняшний день существует множество типов конденсаторов и каждый из них обладает своими преимуществам и недостатками.
Одни могут работать при высоких напряжениях, другие обладают большой ёмкостью, третьи малой утечкой, четвёртые малой индуктивностью - эти факторы определяют область применения конденсаторов конкретного типа.
В этой статье будут рассмотрены основные, но далеко не все типы конденсаторов.

Алюминиевые электролитические конденсаторы .

Алюминиевые электролитические конденсаторы, состоят из двух скрученных тонких алюминиевых полосок, между которыми помещается бумага, пропитанная электролитом. Ёмкость этого типа конденсаторов может быть от 0.1uF до 100 000uF, что является их главным преимуществом перед другими типами, а максимальное рабочее напряжение может доходить до 500V. Максимальное рабочее напряжение и ёмкость обычно указываются на конденсаторе, максимальное рабочее напряжение конденсатора, изображенного на картинке, составляет 35 вольт , а ёмкость или заряд приходящийся на 1 вольт, составляет 680uF . Недостатком этого типа конденсаторов является относительно высокий ток утечки и то, что ёмкость их уменьшается с ростом частоты, именно поэтому на платах часто можно встретить алюминиевый электролитический конденсатор, параллельно которому ставят керамический или как горят “шунтируют керамикой”. Также надо сказать, что этот тип конденсаторов имеет полярность, это значит, что вывод конденсатора, обозначенный минусом на корпусе, должен всегда находиться под более отрицательным напряжением, чем другой вывод конденсатора. При несоблюдении этого правила конденсатор скорее всего взорвётся и именно поэтому применять их можно только в цепях с постоянным и пульсирующим током, но не переменным.

Танталовые конденсаторы .

Танталовые конденсаторы изготавливаются из пентаоксида тантала и схожи по свойствам с алюминиевыми электролитическими конденсаторами, но обладают некоторыми особенностями. Они меньшего размера, максимальное рабочее напряжение до 100V, ёмкость этого типа конденсаторов может быть от 47nF до 1000uF, обладают меньшей индуктивностью и могут применяться в более высокочастотных схемах, работающих на частотах в сотни Khz. К недостаткам можно отнести чувствительность к превышению рабочего напряжения. Надо отметить, что в отличии от алюминиевых электролитических конденсаторов, линией на корпусе помечают плюсовой вывод.

Керамические однослойные дисковые конденсаторы .

Дисковые керамические конденсаторы обладают достаточно большой ёмкостью при их размерах, она может быть от 1pF до 220nF, а максимальное рабочее напряжение не должно превышать 50V. Значение ёмкости на данном типе конденсаторов указывается в pF, например ёмкость конденсатора изображенного на картинке равна 100 000 pF или 100nF или 0.1uF, данное значение получается следующим образом, первые две цифры надо умножить на 10, возведенную в степень третьей цифры, в нашем случае надо 10 х 10^4 = 10^5 или 100 000pF. К достоинствам можно отнести, незначительные токи утечки, небольшие габаритные размеры, низкую индуктивность и способность работать на высоких частотах, а также высокую температурную стабильность ёмкости. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Керамические многослойные конденсаторы

Керамические многослойные конденсаторы представляет собой структуру с чередующимися тонкими слоями керамики и металла.
Этот тип конденсаторов схож по свойствам с однослойными дисковыми, но обладает в несколько раз большей ёмкостью, достигающей нескольких uF. Максимальное рабочее напряжение на корпусе этих конденсаторов не указывается и так же как для однослойных дисковых, не должно превышать 50V. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Керамические высоковольтные конденсаторы

Преимущество этого типа конденсаторов понятно из названия, их отличительной особенностью является способность работать под высоким напряжением. Диапазон рабочих напряжений от 50 до 15000V, а ёмкость может 68pF до 150nF. Максимальное напряжение конденсатора, изображенного на картинке конденсатора равно 1000V, а ёмкость 100nF, выше описывалось как её узнать. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Полиэстеровые конденсаторы .

Ёмкость этого типа конденсаторов может быть от 1nF до 15uF, диапазон рабочих напряжений от 50 до 1500V. Они изготавливаются с разными допуском(допустимое отклонение номинальной ёмкости), 5%, 10% и 20%, обладают высокой температурной стабильностью, достаточно большой ёмкостью при их размерах, низкой ценой и как следствие находят широкое применение. Ёмкость конденсатора, изображенного на картинке равна 150 000pF или 150nF, буква К после числа 154 означает допуск, то есть на сколько реальное значение ёмкости может отличаться от указанной на конденсаторе. В данном случае допуск составляет 10%, подробнее об этом будет написано ниже. Нас больше интересует, что в маркировке этого конденсатора означает 2J и чему равно его максимальное рабочее напряжение. Для того чтобы ответить на два эти вопроса можно воспользоваться таблицей, буквенной маркировки напряжения.


Из таблицы становится понятно, что максимальное рабочее напряжение конденсатора равно 630V

Полипропиленовые конденсаторы .

В конденсаторах этого типа в качестве диэлектрика применяется полипропиленовая плёнка, а их ёмкость может быть от 100pF до 10uF. Одним из главных преимуществ этого типа конденсаторов является высокое рабочее напряжение, которое может достигать 3000V, также преимуществом является возможность изготовления этого типа конденсаторов с допуском в 1%. На картинке изображён конденсатор ёмкость которого 5600pF, а максимальное рабочее напряжение равно 630V. Буква J после числа 562 обозначает допуск и в данном случае он равен 5%. Допуск можно определить, пользуясь таблицей, изображенной ниже.


То есть реальное значение ёмкости может отличаться на 5% той, что указана на конденсаторе. Могут работать на частотах до 100KHz.

Конденсатор представляет собой две пластины, разделенные слоем диэлектрика. Если к обкладкам положить постоянное напряжение, то одна пластина зарядится положительно, другая отрицательно. После отключения конденсатора заряды на обкладках сохранятся, что позволяет использовать этот прибор в качестве накопителя электрической энергии. Количество накопленной энергии (емкость) зависит от площади обкладок, их материала, свойств и типа диэлектрика, проложенного между обкладками. Основная единица измерения емкости – фарад (Ф). Это достаточно большая величина, на практике обычно используются доли фарада — микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ).

1Ф = 1000000мкФ;
1мкФ = 1000нФ;
1нФ = 1000 пФ.

Второй параметр любого конденсатора, который очень важен – номинальное (рабочее) напряжение конденсатора. Это напряжение, подводимое к обкладкам, превышать которое нельзя, иначе конденсатор выйдет из строя. Напряжение в вольтах и емкость нередко обозначаются на корпусе самого конденсатора.

Следующий параметр присущ не всем типам конденсаторов – полярность. Если конденсатор полярный, то к его выводам можно прикладывать только постоянное напряжение, причем «+» источника на положительную обкладку, «-» – на отрицательную. Полярность тоже обозначается на корпусе, чаще маркировкой одного вывода (либо «+» либо «-«).

Вот так полярность обозначается на smd-конденсаторах

Полоска «минусов» расположена напротив вывода «-«

А на отечественных конденсаторах «плюсик» может стоять прямо на корпусе (сбоку или на торце)

У этого типа «минус» всегда на корпусе

Если конденсатор неполярный, то он может работать в цепях переменного и постоянного тока, причем во втором случае за полярностью напряжения следить не нужно.

На электрических схемах конденсаторы обозначаются следующим образом:

Здесь слева неполярный конденсатор, а второе и третье обозначение соответствует полярному конденсатору, причем на третьем рисунке знак «+» может отсутствовать.

И в качестве примера:

Конденсаторы на схемах обозначаются символом С, таким образом конденсатор С1 — неполярный емкостью 100 нанофарад, С2 — полярный, емкостью 30 микрофарад на номинальное напряжение 15 В.

Важно! Заменить конденсатор можно любым подходящей емкости и соответствующего типа, но на напряжение НЕ НИЖЕ указанного на схеме. Выше — пожалуйста.