Скалярное и векторное управление в частотных преобразователях. Скалярное и векторное управление асинхронными двигателями

Векторное управление (ВУ) основано на том, что контролируется не только величина (модуль) управляемой координаты, но и ее пространс-твенное положение (вектор) относительно выбранных осей координат.

Рис. 8.28.Схема частотного ЭП на основе АИТ (а) и зависимостьтока статора от частоты тока в роторе (б)

Для реализации ВУ осуществляется контроль мгновенных величин напряжения, тока и потокосцепления. Путем математических преоб-разований асинхронный двигательАД, характеризуемый большим количеством нелинейных перекрестных связей, можно представить линейной моделью с двумя каналами управления –- моментом и потоком. Подобное удобство управления требует многократных преобразований координат ЭП, что не является препятствием, учитывая современный уровень развития МП техники.

Для понимания сущности ВУ воспользуемся принципиальной схемой двухфазной двухполюсной обобщенной машины (рис. 8.29), к которой может быть приведена симметричная машина, имеющая m-фазную обмотку статора и я-фазную обмотку ротора.

Рис. 8.29. Принципиальная схема двухполюсной двухфазной обобщенной машины: 1 –- статор; 2 –- ротор

Допустим, что система координат вращается в пространстве с произвольными действительнаядействительной,и- мнимой осями, уравнения будут иметь следующий вид:

, (8.27)

где u S , Щ,i S , i 2 ,ψ S , ψ 2 \j7-s>V2 -– соответственно векторы напряжений, токов и потокосцеплений статора 1 и ротора 2; j –- обозначение мнимой оси; Z n - – число пар полюсов; L m –-взаимная индуктивность между обмотками статора и ротора; / 2 - комплексно-со­пряженный вектор i-i; 1т- мнимая часть комплексной перемен­ной;ωю к –- угловая скорость ротора. Потокосцепления равны

, (8.29)

где L s (L sa +L m) и L 2 (L 2 <, +L m) – индуктивности фазных обмоток соответст-венно статора и ротора.

Рис. 8.30.Схема частотного ЭП на основе АИТ (а) и зависимостьтока статора от частоты тока в роторе (б)

Уравнения (8.27) можно записать, используя проекции обобщенных векторов на оси координат и, v, т.е. в скалярной форме:

В зависимости от используемых переменных состояния АД уравне-ния момента могут иметь различную форму. Кроме приведенного урав-нения (8.28), применяют следующие выражения электромагнитного момента:

Уравнения обобщенной машины для системы координат uv(8.27) могут быть записаны в любой системе координат. Выбор координатных осей зависит от типа машины (синхронная, асинхронная) и целей иссле-дования. Применение нашли следующие системы координат: непод-вижная система координат ар (©к = 0); синхронная система координат АУ (сок = соо) и система координатdq,вращающаяся вместе с ротором (со к = со). Взаимное расположение век-торов переменного АД приведено на рис. 8.30.



Переход от уравнений обобщенной машины (8.27), (8.28) к урав-нениям реального трехфазного АД осуществляется с помощью урав-нений координатных преобразованийе.9 М - угол момента, q> - угол между векторами тока и напряжения). О, = в м + ф - угол вектора напряжения (XY); 6« = 9„ + 8 V - угол вектора тока. Формулы координатных преобра-зований получены при условии постоянства мощности обеих машин. Они могут быть получены для любых переменных, записанных в любых осях.

Преобразования реальной машины к обобщенной называются пря-мыми, а преобразования обобщенной машины к реальной – -обратными. Например, формулы прямого преобразования фазных напря-жений ста-тора u sa , Щь, u sc к уравнениям и т, и$ в осях ар векторной диаграммы имеют вид:

Для рассмотрения векторного управления выбирается система координат XY, вращающаяся в пространстве со скоростью поля, т.е. о) к = соо, за последнюю принимается скорость вектора потокосцепления ротора. \j/2- Скорости вращения векторов напряжения, тока и потокосцепления одина­ковы лишь в установившихся режимах, а в переходных процессах они различны. Принцип векторного управления заключается в том, что

Рис. 8.30. Взаимное расположение векторов переменного АДВекторная диаграмма: % = 8 2 + в г - угол потока.

Формулы обратного преобразования

Usb =(~Usa+А/ЗU45)/ 2, U sc =(-М ю -л/ЗUф)/ 2. (8.33)

вектор переменной (тока, напряжения и т.д.) располагают в пространст-ве определенным образом. Наиболее эффективно расположить вектор потокосцепления vj7 2 вдоль вещественной оси Xсинхронной системы коор-динат, вращающейся со скоростью поля тогда . При этом уравнения АД с короткозамкнутым ротором имеют вид

0= -ω 2 + R 2 K 2 i sy ,

M э = 3/2 Z II K 2 ψ 2 i sy . (8.34)

где К 2 = L s - Кг L m ; Кг = Ь т /Ьг, сог = соо - со - частота скольжения или частота тока ротора.Анализируя уравнения (8.34), можно заметить их некоторое сходствос уравнениями ДПТ: момент в (8.34) пропорционален потоко-сцеплению ротора и составляющей вектора тока статора i sy , а потоко-сцепление пропорционально составляющей i sx /и. Это дает возможность, подобно ДПТ, раздельно управлять потоком и моментом, т.е. принцип ВУ приближает АД с его синусоидальными переменными к ДПТ. ВУ позволяет использовать при синтезе методы подчиненного регули-рования, широко распространенные в ЭПх постоянного тока. Различие (не в пользу ВУ) состоит в том, что независимое управление потоком, моментом и скоростью осуществляется не реальными переменными двигателя, а преобразованными к иной системе координат.

2. При частоте вращения 810 мин -1:

Функциональная схема векторного управления АД рис. 8.31: з –- задание; У –- управление; ОС –- обратная связь по скорости; с –- скорость; / I –- ток; х, у – -принадлежность переменных к синхронной системе координат; αа, β р–- принадлежность переменных к неподвижной системе координат; ф – потокосцепление; а, Ьb,с – индексы фаз.

Рис. 8.31.Функциональная схема векторного управления АД

Схема выполнена на основе принципа подчиненного регулирования и содержит три контура:

1) скорости (внешний); содержит датчик скорости BR и регулятор скорости вращения (момента) AR;

2) потокосцепления (магнитного потока) с регулятором потока Av|/Uψ и каналом ОС, имеющим выходную величину щ;

3) активной^и реактивной 4е составляющей вектора тока статора с регу-ляторами АА2 и АА1.

Сигнал ОС по току статора осуществляется датчиком тока UA, который измеряет фазные токи двигателя в двух фазах, например А и В, и вырабатывает сигналы u ia и ы,*. Для преобразования этих сигналов к неподвижной системе координат служит функциональный преобразователь U1, работающий в соответст­вии с формулами (8.32) прямых координатных преобразований cosф = U фо /U ф, которые в преобразователе А2 позволяют перейти от непод-вижных координат а р αβк координатам XYпо noследующим формулам:

u iβ =1/√3 (u iα +u ib).

Измерение потокосцепления может производиться с помощью различных устройств, например измерительной обмоткой укладываемой в теже пазы, что и силовая обмотка. Наибольшее распространение полу-чили датчики Холла, помещаемые в воздушный зазор двигателя. Сигна-лы датчика Uy преобразуются в функциональном преобразователе U2 по формулам (8.32) в сиг­налы и фа и Ыфр неподвижной системы координат. Полу-ченные величины необходимо преобразовать к системе координат XY вращающейся в пространстве со скоростью поля двигателя.

С этой целью в пореоброазователе D выделяется модуль потокосцеп-ления ротора

в виде соответствующего сигнала и ф

Сигналы напряжения и фа, « фр, Uix , u iy пропорциональны соответствующим физичес-ким величинам.

На вход регулятора потокосцепления UψАу подается разность сиг-налов задания потокосцепления м зф и ОС м ф, т.е. «у.Ф = "з.ф - м Ф, а на выходе Ау формируется сигнал задания тока статора по оси X, т.е. u 3 ix . Разность сигналов u 3 ix - Uix, проходя че­рез регулятор тока АА1, превращается в сигнал и* ы.Аналогичные преобразования имеют место в канале управления по оси Y, заза исключением того, что здесь установлен регулятор скорости (момента) AR, выходной сигнал которого делится на сигнал модуля потокосцепления Uψм ф для получения сигнала задания тока и по оси Y. На выходе регулятора АА2 составляющей тока статора по оси Г вырабатывается сигнал и! у, который вместе с сигналом и,* подается на входы Бблока А1, функционируетющего в соответствии с первыми двумя уравнениями (8.34). На выходе блока А1 получаем пре-образованные сигналыи х и щ, в которых отсутствует взаимное влияние кон-туров регулирования составляющих токов по осям XylY. Управляющие сигналы и х и и у, записанные во вращающейся системе координат XY, в координатном преобразователе A3 превращаются в сигналы управления ПЧ в неподвижной системе координат аВ αβпо уравнениям

U ix = u iα cosφ + u iβ sinφ,;

U yα = u x cosφ - u y sinφ,

U yβ = u x cosφ - u y sinφ. (8.36)

Для управления силовыми ключами ПЧ в трехфазной системе координат необходимо с помощью АЧ получить сигналы иу а U Уа, U У b иуь, U У c му с в соответствии с формулами обратного преобразования (8.33):

Благодаря координатным преобразованиям в системе векторного управления ЧЭП выделяют два канала регулирования: потокосцепления (магнитного потока) и скорости вращения (момента). В этом смысле система векторного управления аналогична ЭП постоянного тока с двухзонным регулированием скорости.

Для многократного преобразования координат ЭП в соответствии с приведенными выше формулами служат специализированные микро контроллеры класса DSP, работающие в режиме реального времени. Это позволяет получить глубокорегулируемые ЭП с высоким быстродейст-вием, используя асинхронный короткозамкнутый двигатель.

Существует множество структурных решений векторного управле-ния. Функциональная схема ВУ АД рис. 8.31 относится к классу прямого ВУ, при котором непосредственно измеряется по-токосцепление (магнит-ный поток). При косвенном ВУ измеряют положение ротора АД и электрические параметры (ток, напряжение). Такие системы получили большое распространение по двум причинам:

1) измерение потока трудоемко;

2) датчик положения необходим во многих промышленных ЭП (например,позиционный ЭП станков с ЧПУ и автоматиче­ских манипуляторов).

Если нет необходимости измерять положение ротора, применяют так называемое «бездатчиковое» ВУ (датчик положения ротора отсутст-вует),что требует более сложных вычислительных процедур.

Рис. 8.32.Схема подключения комплектного ЭП.

ЭП с ВУ обеспечивает широкий диапазон регулирования скорости (до 10 000) и во многих случаях заменяет широкорегулируемый ЭП с коллекторными ДПТ.

Схема комплектного ЭП рис. 8.32 изготавливаемого многими предприятями содержит: клеммы силовые: R, S, T (LI, L2, L3) –- клеммы питания; U, V, W (Tl, T2, ТЗ) –- выход преобразователя частоты; PD, Р –- подключение дросселя в промежуточном звене постоянного тока; Р, RB–- внешний тормозной резистор; Р, N –- внешний модуль торможения; G–- защитное заземление.

Клеммы управления: L –- клемма «общий» для аналоговых входов и выходов; Н –- питание потенциометра задания частоты; О –- клемма установки выходной частоты напряжением; 01, 02 –- дополнительная клемма установки выходной частоты соответственно током и напряже-нием; AM –- импульсный выход (напряжение); AMI –- аналоговый выход (ток); Р24 –- клемма питания; СМ1, ПС, 12С, AL0 –- клемма «общий»; PLC –- общая клемма для внешнего источника питания; FW–- прямое вращение; 1, 2, 3, 4, 5 –- программируемые дискретные входы; ПА –- клемма программируемого выхода 11; 12А –- клемма программируемого выхода 12; AL1, AL2 –- реле сигнализации; ТН –- вход термистора.

Клеммы управления: L - клемма «общий» для аналоговых входов и выходов; Н - питание потенциометра задания частоты; О - клемма установки выходной частоты напряжением; 01, 02 - дополнительная клемма установки выходной частоты соответст­венно током и напряжением; AM - импульсный выход (напря­жение); AMI - аналоговый выход (ток); Р24 - клемма питания; СМ1, ПС, 12С, AL0 - клемма «общий»; PLC - общая клемма для внешнего источника питания; FW - прямое вращение; 1, 2, 3, 4, 5 - программируемые дискретные входы; ПА - клемма программируемого выхода 11; 12А - клемма программируемого выхода 12; AL1, AL2 - реле сигнализации; ТН - вход термистора.

Контрольные вопросы

1. Покажите вращающееся магнитное поле при симметричном пи­тании при числе фаз, отличном от трех, например при т = 2, т = 6.

2. Каковы негативные последствия регулирования скорости напря­жением в цепи статора при длительном режиме работы?

3. Для каких механизмов предпочтительно регулирование скорости изменением напряжения?

4. По какой причине частотное регулирование скорости АД является наиболее экономичным?

5. Должно ли регулироваться напряжение при регулировании час­тоты и почему?

6. Какие ограничения имеются при регулировании частоты АД сверх- номинального значения?

7. Какие типы преобразователей частоты для питания АД вы знаете? Приведите формы напряжения на двигателе.

8. Какие способы коммутации тиристоров вы знаете?

9. Какими способами осуществляется регулирование напряжения статических преобразователей?

10. В чем существенное различие инверторов тока и напряжения?

11. Возможно ли рекуперативное торможение в системе частотного ЭП? Что для этого нужно в системе АИН-АД и системе НПЧ-АД?

12. Возможно ли получение частоты питания АД выше частоты сети в системе НПЧ-АД?

13. Какие комплектные частотные ЭП вы знаете?

14. Каково назначение конденсатора в звене постоянного тока в преобразователе частоты на основе автономного инвертора напряжения при работе на АД?

15. Сравните значение коэффициента мощности для частотного ЭП с АД при питании от автономного инвертора напряжения и для АД при питании от сети (при одинаковых значениях частоты и нагрузки).

16. Какие системы координат применяются при векторном управ-лении?

17. Для чего при векторном управлении необходимо преобразование переменных из одной системы координат в другую?

18. Возможно ли векторное управление без датчиков магнитного по­тока АД?

19. Нарисуйте схему системы тиристорный регулятор напряжения – -асинхронный электродвигатель (система ТРН- – АД).

20. Как будут изменяться механические характеристики АД при изменении угла управления ТРН?

21. В каких пределах может изменяться момент сопротивления на валу электродвигателя в системе ТРН- – АД? Нарисуйте примерную об-ласть его допустимых значений на графиках механических характерис-тик.

22. Нарисуйте схему включения дополнительного резистора в роторную цепь АД при импульсном регулировании.

23. Каким образом изменяются потери энергии в АД с импульсным регулированием добавочного резистора при регулировании скорости АД?

24. Нарисуйте примерный вид механических характеристик АД с импульсным регулированием добавочного резистора при разных значе-ниях скважности коммутации тиристоров.

25. Объясните принцип действия асинхронного вентильного каскада (АВК).

26. Покажите на графике, как будут изменяться механические харак-теристики АВК при изменении угла опережения инвертора.

27. Каким образом должно изменяться напряжение на статоре АД при изменении частоты в случае разных законов изменения момента сопротивления от скорости?

28. Покажите примерный вид механических характеристик при частотном регулировании скорости в случае, если момент сопро-тивления не зависит от скорости.

29. Назовите, какие типы ТПЧ применяются при частотном регули-ровании скорости АД. В случае какого ТПЧ возможно регулирование скорости только в области ее малых значений.

30. В чем заключается смысл «векторного управления» АД?


33.Трехфазный 4-полюсный АД, обмотка статора которого соединена в «звезду», имеет следующие номинальные данные: Р 2 =11,2 кВт, п= 1500 мин -1 , U=380 В,f=50 Гц. Заданы параметры двигателя:r=0,66 Ом,; r 2 ’ = 0,38 Ом, х= 1,14 Ом, х" 2= 1,71 Ом, х m = 33,2 Ом. Двигатель регулируется одновременным изменением напряжения и частоты. Отношение напряжения к частоте поддерживается постоянным и равным отношениюих номинальных значений.

34.Рассчитайте максимальный момент М max и соответствующую ему; скорость w m ах для частот 50 и 30 Гц.

35.Повторите п. 1, пренебрегая сопротивлением статора (r = 0).

Преобразователь частоты регулирует момент и скорость вращения асинхронного двигателя, используя один из двух основных методов частотного управления - скалярный или векторный. Рассмотрим подробнее особенности этих методов.

Линейная скалярная рабочая характеристика ПЧ

При работе асинхронного электродвигателя от скалярного частотного преобразователя напряжение на двигателе понижается линейно с понижением частоты. Это происходит из-за того, что применяется широтно-импульсная модуляция (ШИМ), при которой отношение действующего напряжения к частоте является константой во всем диапазоне регулирования.

Вольт-частотная (вольт-герцовая) рабочая характеристика ПЧ будет линейной, пока напряжение на возрастет до предела, определяемого напряжением питания преобразователя. Скалярное управление не позволяет двигателю развить требуемую мощность на низких частотах (мощность зависит от напряжения), и момент на валу сильно падает.

Квадратичная скалярная рабочая характеристика

В некоторых случаях, например, при работе преобразователя на мощные вентиляторы и насосы, используют квадратичную вольт-частотную характеристику с пониженным моментом, что позволяет учесть механику процесса, снизить токи, и, соответственно, потери на низких частотах.

Основной минус скалярной вольт-частотной характеристики

У линейной и квадратичной вольт-частотной зависимости, при её простоте и широком распространении, есть большой минус – падение мощности на валу, а значит падение момента и частоты вращения двигателя. При этом происходит так называемое скольжение, когда частота вращения ротора отстает от частоты вращения электромагнитного поля.

Для устранения этого эффекта используется компенсация скольжения, позволяющая скорректировать выходную частоту (обороты двигателя) при возрастании момента нагрузки. Если правильно выбрать значение компенсации, фактическая скорость вращения при большой нагрузке будет приближаться к скорости вращения на холостом ходу.

Кроме этого, в большинстве ПЧ с линейной вольт-частотной характеристикой имеется функция компенсации момента на низких скоростях. Данная функция реализуется за счет повышения напряжения на низких частотах и при неправильном применении может вызвать перегрев двигателя.

Оба параметра компенсации имеют неизменное (установленное при настройке) значение и от нагрузки не зависят.

Преимущества векторного управления

Существует множество задач, когда нужно обеспечить заданную частоту вращения, и описанный недостаток становится очень актуальным. В таких случаях применяют векторное частотное управление, при котором контроллер вычисляет напряжение, необходимое для поддержания момента, обеспечивающего стабильную частоту. В отличие от скалярного режима, здесь происходит «умное» управление магнитным потоком ротора.

Векторное управление асинхронным двигателем особенно актуально на низких частотах – ниже 10 Гц, когда рабочий момент двигателя сильно падает. Кроме того, данный метод позволяет держать стабильную скорость (с предсказуемым линейным изменением) при разгоне. Это достигается за счет получения высокого пускового момента вплоть до выхода двигателя на режим.

Важно и то, что при векторном управлении происходит сбережение электроэнергии (в некоторых случаях – до 60%), поскольку большую часть времени частотный преобразователь передает в двигатель ровно столько энергии, сколько необходимо для поддержания заданной скорости.

Различают два вида векторного управления - без датчика скорости (без обратной связи, или бессенсорное) и с обратной связью, когда в качестве датчика, как правило, используется энкодер.

Векторное управление без обратной связи

В этом случае частотный преобразователь вычисляет скорость вращения двигателя по математической модели на основе ранее введенных данных (параметров двигателя) и данных о мгновенных значениях тока и напряжения. Опираясь на полученные расчеты, ПЧ принимает решение об изменении выходного напряжения.

Перед включением векторного бессенсорного режима необходимо тщательно выставить номинальные параметры двигателя: напряжение, ток, частоту, скорость (обороты), мощность, количество полюсов, а также сопротивление обмоток и индуктивные параметры. Если какие-то значения неизвестны, рекомендуется провести автотестирование двигателя на холостом ходу. Некоторые модели частотных преобразователей устанавливают параметры по умолчанию для стандартного двигателя после введения номинальных значений. Также необходимо задать пределы временных и токовых параметров векторного управления.

Векторное управление с обратной связью

Этот режим отличается более высокой точностью управления скоростью двигателя. Обратную связь обеспечивает энкодер, который сопрягается с частотным преобразователем через дополнительный модуль.

Энкодер устанавливается на валу электродвигателя либо последующего механизма и передает данные о текущей частоте вращения. На основании полученной информации преобразователь меняет напряжение, момент и, соответственно, скорость двигателя. Стоит добавить, что при больших динамических нагрузках (частых изменениях момента) и работе на пониженных скоростях рекомендуется применение принудительного охлаждения внешним вентилятором.

Другие полезные материалы:

1

При проектировании частотного регулирования электропривода возникает необходимость построения адекватных моделей, в полной мере учитывающих специфику протекающих электромеханических процессов в двигателе. Для апробации моделей необходимо сравнение с физически реализуемым процессом на реальном оборудовании, в связи с этим возникает необходимость определения параметров реальных электродвигателей для проверки модели на адекватность. В статье описана математическая модель векторного управления асинхронным электродвигателем. Модель позволяет отслеживать электромеханические процессы в электродвигателе при его работе. Получены графики механических и электрических переходных процессов, характеризующих пуск электродвигателя. Построена механическая характеристика электродвигателя при векторном управлении, наглядно показывающая увеличение нагрузочного диапазона. Произведена оценка адекватности модели. Математические эксперименты и создание модели выполнены в графической среде имитационного моделирования Simulink – приложении к пакету Matlab.

инвертор

математическая модель

механическая характеристика

векторное управление

асинхронный двигатель

1. Виноградов А.Б. Векторное управление электроприводами переменного тока / ГОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина». – Иваново, 2008. – 297 с.

2. Лиходедов А.Д. Построение механической характеристики асинхронного двигателя и её апробация // Современные проблемы науки и образования. – 2012. – № 5. – URL: http://www..09.2012).

3. Усольцев А.А. Векторное управление асинхронными двигателями: учебное пособие по дисциплинам электромеханического цикла. – СПб., 2002.

4. Шувалов Г.А. Экономия электроэнергии с помощью частотного преобразователя // Электрооборудование: эксплуатация и ремонт. – 2012. – № 2.

5. Blaschke, F. Das Prinzip der Feldorientierung, die Grundlage für die Transvector-Regelung von Drehfeldmaschinen (in German), Siemens-Zeitschrift 45, Heft 10, 1971.

6. PLC – это просто!! Векторное управление. – URL: http://plc24.ru/vektornoe-upravlenie/ (дата обращения: 12.09.2012).

Развитие асинхронного электропривода с векторным управлением

Принято различать два основных способа управления электроприводами переменного тока, использующими в качестве преобразователей энергии по-лупроводниковые преобразователи частоты: частотное и векторное.

При частотном управлении в ЭП реализуется один из статических за-конов частотного управления (например, , и т.д.). На выходе системы управления формируется задание по частоте и ам-плитуде выходного напряжения ПЧ. Область применения таких систем: асинхронный электропривод, к кото-рому не предъявляется повышенных статических и динамических требований, вентиляторы, насосы и прочие общепромыш-ленные механизмы.

При векторном управлении управление осуществляется по мгновен-ным значениям переменных. В цифровых векторных системах может выпол-няться управление по эквивалентным (усредненным на интервале дискретно-сти управления) переменным .

В 1971 году Блашке предложил принцип построения системы управления асинхронным двигателем , в котором использовалась векторная модель АД с ориентацией системы координат по потокосцеплению ротора. Этот принцип называется также прямым управлением моментом . Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять, кроме амплитуды, и фазу статорного тока, то есть вектор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по другим параметрам двигателя. В качестве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты. Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно-регулируемого электропривода без обратной связи по скорости невозможна. Векторное управление с датчиком обратной связи по скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости - сотые доли процента, точность по моменту - единицы процентов .

Питание АД и СД в режиме векторного управления осуществляется от инвертора, который может обеспечить в любой момент времени требуемые амплитуду и угловое положение вектора напряжения (или тока) статора. Измерение амплитуды и положение вектора потокосцепления ротора производится с помощью наблюдателя (математический аппарат, позволяющий восстанавливать неизмеряемые параметры системы). В зависимости от условий эксплуатации электропривода возможно управление электродвигателем как в режимах с обычной точностью, так и в режимах с повышенной точностью отработки задания на скорость или момент. Так, например, частотный преобразователь обеспечивает точность поддержания скорости вращения ±2-3% в режиме U/f, при векторном управлении без датчика скорости ±0,2%, при полном векторном управлении с датчиком скорости обеспечивается точность ±0,01% .

Общий принцип векторного управления АД

В дальнейшем мы будем использовать следующие индексы систем координат: a-b - неподвижная система координат (), ориентированная по оси фазы a обмотки статора; x-y - система координат, вращающаяся синхронно с ротором () и ориентированная по оси фазы a его обмотки; d-q - система координат, вращающаяся синхронно с потокосцеплением ротора () и ориентированная по его направлению; m-n - произвольно ориентированная система координат, вращающаяся с произвольной скоростью .

Общий принцип моделирования и построения системы управления АД заключается в том, что для этого используется система координат, постоянно ориентированная по направлению какого-либо вектора, определяющего электромагнитный момент. Тогда проекция этого вектора на другую ось координат и соответствующее ей слагаемое в выражении для электромагнитного момента будут равны нулю, и формально оно принимает вид, идентичный выражению для электромагнитного момента двигателя постоянного тока, который пропорционален по величине току якоря и основному магнитному потоку.

В случае ориентации системы координат по потокосцеплению ротора () момент можно представить как:

, (1)

где - индуктивность рассеяния цепи ротора, - индуктивность цепи намагничивания, - число пар полюсов, - проекции токов статора на оси системы координат .

По данному выражению можно при условии постоянства потокосцепления ротора управлять электромагнитным моментом, изменяя проекции тока статора на поперечную ось . Выбор уравнения для построения системы управления играет большую роль, т.к. многие величины, в особенности у короткозамкнутых АД, не могут быть измерены. Кроме того, этот выбор существенно влияет на сложность передаточных функций системы, иногда в несколько раз увеличивая порядок уравнений.

Для построения системы векторного управления АД нужно выбрать вектор, относительно которого будет ориентирована система координат, и соответствующее выражение для электромагнитного момента, а затем определить входящие в него величины из уравнений для цепи статора и/или ротора (2) :

, (2, а)

, (2, б)

где - напряжение обмоток статора в векторной форме; - активные сопротивления обмоток статора и ротора; составляющие ,связаны с изменением потокосцепления во времени вследствие изменения во времени токов и называются ЭДС трансформации, по аналогии с процессами ее возбуждения в соответствующей электрической машине; составляющие , - связаны с изменением потокосцепления вследствие вращения ротора и называются ЭДС вращения.

Если в качестве опорного вектора выбрать потокосцепление ротора и ориентировать по нему координатную систему так, чтобы ее вещественная ось совпадала с направлением , то угловая частота вращения системы координат будет равна угловой частоте питания статора , т.к. векторы потокосцеплений статора и ротора вращаются с одинаковой частотой. Применение вектора потокосцепления ротора теоретически обеспечивает большую перегрузочную способность АД.

При этом проекции вектора тока статора с учетом того, что , равны:

(3)

где - электромагнитная постоянная времени ротора.

Выразим потокосцепление и угловую частоту ротора:

(4)

Таким образом, с помощью проекции тока статора можно управлять потокосцеплением ротора, и передаточная функция этого канала соответствует апериодическому звену с постоянной времени, равной постоянной времени ротора; а с помощью проекции можно независимо и безынерционно управлять частотой ротора .

При этом электромагнитный момент АД можно определить, зная частоту токов ротора при заданном потокосцеплении:

, (5)

Выражения - определяют связь между проекциями тока статора на оси координат, потокосцеплением, частотой ротора и электромагнитным моментом АД. Из выражения и уравнения движения следует, что управление моментом может осуществляться безынерционно двумя входными сигналами: потокосцеплением и частотой ротора. Эти сигналы связаны с проекциями вектора тока статора выражениями . Поэтому устройство векторного управления содержит блок развязки координат (РК), осуществляющий преобразования в соответствии с выражениями (3), а также ротатор, вращающий вектор тока статора в направлении, противоположном вращению ротора АД. Входными сигналами для устройства управления будут линейное напряжение сети и частота питающего напряжения, соответствующие потокосцеплению и частоте ротора. Название блока развязки координат происходит от выполняемой им функции формирования сигналов, соответствующих независимым (развязанным, разделённым) проекциям вектора тока статора (рисунок 1).

Рис. 1. Структурная схема блока развязки координат.

Из выражения для электромагнитного момента (5) и общего уравнения движения можно получить передаточную функцию АД по каналу управления частотой ротора:

где - механическая постоянная времени. Эта передаточная функция полностью соответствует двигателю постоянного тока, поэтому построение систем электропривода с векторным управлением АД ничем не отличается от приводов постоянного тока.

Следует отметить, что устройство управления может выполнять свои функции только при условии, что параметры АД, входящие в передаточные функции его звеньев, соответствуют истинным значениям, в противном случае потокосцепление и частота ротора в АД и в устройстве управления будут отличаться друг от друга. Это обстоятельство создает значительные трудности при реализации систем векторного управления на практике, т.к. параметры АД изменяются в процессе работы. В особенности это относится к значениям активных сопротивлений .

Математическое описание координатных преобразований

Если вектор тока представлен в неподвижной системе координат (a, b), то переход к новой системе координат (x,y), развернутой относительно исходной на некоторый угол (рисунок 2а), осуществляется из следующего соотношения аргументов комплексных чисел:

Или (7)

Рис. 2. Обобщенный вектор тока в различных системах координат.

Для системы координат, вращающейся с постоянной угловой частотой , угол равен .

Преобразование координат можно записать в развернутом виде следующим образом:

Отсюда можно найти составляющие вектора и в матричной форме:

, (9)

где , - мгновенные значения токов соответствующих обмоток.

Необходимым элементом системы векторного управления АД является ротатор, осуществляющий преобразование координат векторов в соответствии с выражением (9) .

Для преобразования переменных из системы координат (d,q) в систему координат (a, b) воспользуемся следующими уравнениями:

где γ - угол полеориентирования. Структурная схема ротатора изображена на рисунке 3.

Рис. 3. Структурная схема ротатора.

Математическая модель АД

Асинхронный двигатель смоделирован в системе координат - α, β. Уравнения, соответствующие этой системе координат, описываются системой уравнений:

(11)

где: , , , - составляющие векторов потокосцепления статора и ротора в системах координат ; , - составляющие вектора напряжения статора в системах координат ; - активные сопротивления обмоток статора и ротора; - полные индуктивности обмоток статора и ротора (17),(18);- коэффициенты электромагнитной связи статора и ротора (12),(13); p - число пар полюсов; - механическая скорость ротора; J - момент инерции ротора двигателя; - момент сопротивления на валу двигателя.

Значения полных индуктивностей обмоток и коэффициентов электромагнитной связи статора и ротора вычисляются по формулам:

где:- индуктивности рассеяния; - индуктивность цепи намагничивания,

где: - индуктивное сопротивление рассеяния обмоток статора и ротора; - индуктивное сопротивление цепи намагничивания; f - частота напряжения, подводимого к статору.

При решении системы дифференциальных уравнений в координатах (11) можно получить динамическую механическую характеристику и временные характеристики переменных состояния (например, момента и скорости), которые дают представление о процессах, протекающих в двигателе. Составляющие напряжения, подводимого к статорной обмотке двигателя, вычисляются по формуле:

(19)

где U - действующее значение напряжения, подводимого к статору.

Решение уравнений сводится к интегрированию левой и правой частей каждого дифференциального уравнения системы:

(20)

Токовременные зависимости вычисляются по уравнениям:

(21)

Паспортные данные АД ДМТ f 011-6у1 приведены в статье .

На рисунке 4 изображена модель АД, управляемого током статора, в системе координат, ориентированной по потокосцеплению ротора.


Рис. 4. Модель векторного управления АД в среде Simulink:

АД - асинхронный двигатель;

УУ - устройство управления, включающее: РК - блок развязки координат, Р - ротатор;

Н - нагрузка, учитывающая также сопротивление подшипников.

Модель векторного управления АД позволяет отслеживать электромагнитные процессы, происходящие в асинхронном двигателе при его работе.

На следующем графике (рисунок 5) изображена механическая характеристика электродвигателя при векторном управлении, полученная модельным путем, в сравнении с механической характеристикой электродвигателя без регулятора, полученной при натурном эксперименте .

Рис. 5. Сравнение механических характеристик.

Как можно видеть по графику, при векторном управлении механическая характеристика асинхронного двигателя приобретает жёсткость, вследствие чего расширяется перегрузочный диапазон. Значения характеристик в диапазоне от 0 до 153 Н·м расходятся незначительно, погрешность составляет лишь 1,11%, следовательно, полученная математическая модель адекватно отражает работу реального двигателя и её можно использовать для проведения экспериментов в инженерной практике.

Заключение

Применение векторного управления позволяет посредством изменения амплитуды и фазы питающего напряжения напрямую управлять электромагнитным моментом электродвигателя. Для векторного управления асинхронным двигателем следует сначала привести его к упрощенной двухполюсной машине, которая имеет две обмотки на статоре и роторе, в соответствии с этим имеются системы координат, связанные со статором, ротором и полем. Векторное управление подразумевает наличие в звене управления математической модели регулируемого электродвигателя.

Механические характеристики, полученные при работе описанной модели, подтверждают теоретические сведения о векторном управлении. Модель адекватна и может применяться для дальнейших экспериментов.

Рецензенты:

Швецов Владимир Алексеевич, д.т.н., профессор кафедры РЭС КамчатГТУ, г. Петропавловск-Камчатский.

Потапов Вадим Вадимович, д.т.н., профессор филиала ДВФУ, г. Петропавловск-Камчатский.

Библиографическая ссылка

Лиходедов А.Д., Портнягин Н.Н. МОДЕЛИРОВАНИЕ ВЕКТОРНОГО УПРАВЛЕНИЯ АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ // Современные проблемы науки и образования. – 2013. – № 1.;
URL: http://science-education.ru/ru/article/view?id=8213 (дата обращения: 18.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Технические различия между векторными и скалярными частотными

преобразователями

Вопрос: На рынке представлены векторные и скалярные частотные преобразователи, причем

векторные ощутимо дороже. Каковы технические различия между ними?

Вопрос не так прост, чтобы ответить на него односложным образом. Сами по себе термины

"векторный" и "скалярный" являются неточными применительно к характеристике

частотных преобразователей. Поскольку речь идет по существу о параметре переменного

тока, то использование термина "скалярный" вообще недопустимо. Из курса элементарной

физики хорошо известно, что скалярная величина - это такая величина, каждое значение которой (в отличие от вектора) может быть выражено одним (действительным) числом,

вследствие чего совокупность значений скаляра можно изобразить на линейной шкале (скале - отсюда название). Длина, площадь, время, температура и т. д. - скалярные величины. Векторными величинами, или векторами, называют величины, имеющие и численное

значение, и направление. В этой связи разделение частотных преобразователей на скалярные

и векторные в принципе некорректно, и отражает стремление менеджеров торговых

компаний обосновать более высокие цены на один из типов преобразователей, якобы имеющий превосходство над другим.

Что касается технической стороны дела, она заключается в следующем.

Основным способом корректировки вращающего момента на валу электродвигателя является

изменение частоты и величины тока обмоток статора, что приводит к изменению силы его

вращающегося магнитного поля. Большинство частотных преобразователей устроены таким

образом, что дают возможность пользователю настроить характеристику выходных

электрических параметров под конкретный вид оборудования. Например, в зависимости от

величины момента инерции приводимого в движение оборудования можно придать

характеристике выходного тока преобразователя линейный, параболический или гиперболический вид.

Так, если необходимо стронуть с места тяжелую массу на приводимом в движение

транспортере, характеристике выходного тока следует придать гиперболический вид. Водяные насосы и вентиляторы желательно приводить в движение по параболической

кривой, что дает экономию электроэнергии. По этому алгоритму работают практически все

частотные преобразователи, называемые неправильным термином "скалярные", более точным названием которых было бы: "частотные преобразователи с предварительной настройкой частоты и величины выходного тока".

Другим эффективным средством повышения момента на валу электродвигателя является

использование 3-й гармоники выходного тока, вектор которой, как и кратных ей более

высоких гармоник, вращается в ту же сторону, что и вектор тока основной гармоники (50

Гц), т.е., имеет прямую последовательность. Другие же вращаются в обратном направлении

и имеют обратную последовательность. Общий ток нейтрали, вычисляемый по формуле:



управления параметрами выходного тока, а именно:

1) Преобразователи с предварительной настройкой параметров выходного тока .

Используются в большинстве общепромышленных приводов как с обратной связью по

контролю технологического параметра так и без нее, включая приводы насосов,

вентиляторов, конвейеров, транспортеров, экструдеров, в том числе одно- и многодвигательные системы.

2) Преобразователи с динамической настройкой параметров выходного тока . Используются в однодвигательных приводах высокоточного технологического

оборудования. Могут быть с обратной связью по контролю положения ротора двигателя и без нее. По точности и глубине регулирования скорости вращения несколько превосходят преобразователи первого типа, но значительно уступают сервоприводам.

Что касается проблемы в целом, следует иметь ввиду, что для решения конкретных задач в области управляемого привода применяются соответствующие электродвигатели со своими

системами управления - шаговые моторы с контроллерами, серводвигатели с контроллерами,

двигатели постоянного тока с контроллерами и, наконец, асинхронные и синхронные

электродвигатели с частотными преобразователями. Попытки создать универсальный привод

заведомо обречены на провал, поскольку конструктивные различия между приводами

слишком велики, а решаемые приводами задачи просто несопоставимы. Невозможно создать из асинхронного двигателя серводвигатель, а из синхронного шаговый, даже если встроить в него полсотни полюсов.

Что же делать? Все гениальное просто - достаточно правильно спроектировать привод с

учетом необходимого момента на валу в самом неблагоприятном диапазоне частот

вращения, а управление технологическим параметром поручить ПИД-регулятору, который имеется в большинстве скалярных преобразователей. автор статьи

большинстве современных т.н. "скалярных" преобразователей.

Для осуществления возможности регулирования момента и скорости в современных электроприводах используются следующие методы частотного управления, такие как:

  • Векторное;
  • Скалярное.

Наибольшее распространение получили асинхронные электроприводы со скалярным управлением. Его используют в приводах компрессоров, вентиляторов, насосов и прочих механизмов в которых необходимо удерживать на определенном уровне или скорость вращения вала электродвигателя (применяется датчик скорости), либо какого-то технологического параметра (к примеру, давление в трубопроводе, с применением соответствующего датчика).

Принцип действия скалярного управления асинхронным двигателем - амплитуда и частота питающего напряжения изменяются по закону U/f^n = const, где n>=1. То, как будет выглядеть данная зависимость в конкретном случае, зависит от требований предъявляемых нагрузкой электроприводу. Как правило, в качестве независимого воздействия выступает частота, а напряжение при определенной частоте определяется видом механической характеристики, а также значениями критического и пускового моментов. Благодаря скалярному управлению обеспечивается постоянная перегрузочная способность асинхронного двигателя, независящая от частоты напряжения, и все же при довольно низких частотах может произойти значительное снижение момента, развиваемого двигателем. Максимальное значение диапазона скалярного управления, при котором возможно осуществление регулирования значения скорости вращения ротора электродвигателя, без потери момента сопротивления не превышает 1:10.

Скалярное управление асинхронным двигателем довольно просто реализуется, но все же имеются два значительных недостатка. Во-первых, если на валу не установлен датчик скорости, то невозможно осуществлять регулирование значения скорости вращения вала, поскольку она зависит от воздействующей на электропривод нагрузки. Установка датчика скорости с легкостью решает данную проблему, но еще одним значительным недостатком остается – отсутствие возможности регулирования значения момента на валу двигателя. Можно конечно установить датчик момента, но стоимость подобных датчиков, как правило, превышает стоимость самого электропривода. Причем, даже если установить датчик управления моментом, то процесс управления этим самым моментом окажется невероятно инерционным. Еще одно «но» - скалярное управление асинхронным двигателем характеризуется тем, что невозможно осуществление одновременного регулирования скорости и момента, поэтому приходится осуществлять регулирование той величины, которая в данный момент времени наиболее важна в силу условий технологического процесса.

Дабы устранить недостатки, которыми обладает скалярное управление двигателем, еще в 71-м году прошлого века компанией SIEMENS было предложено внедрение метода векторного управления двигателем. В первых электроприводах с векторным управлением использовались двигатели, в которых были встроены датчики потока, что значительно ограничивало область применения подобных приводов.

Система управления современных электроприводов содержит в себе математическую модель двигателя, позволяющую рассчитать скорость вращения и момент вала. Причем в качестве необходимых датчиков устанавливаются только датчики тока фаз статора двигателя. Специально разработанная структура системы управления обеспечивает независимость и практически безынерционность регулирования основных параметров – момент вала и скорость вращения вала.

К сегодняшнему дню сформировались следующие системы векторного управления асинхронным двигателем:

  • Бездатчиковые – на валу двигателя отсутствует датчик скорости,
  • Системы, имеющие обратную связь по скорости.

Применение методов векторного управления зависит от области применения электропривода. Если диапазон измерения значения скорости не превышает 1:100, а требования, предъявляемые к точности, колеблются в пределах ±1,5%, то используется бездатчиковая система управления. Если измерение скорости осуществляется в пределах достигающих значений 1: 10000 и больше, а уровень точности должен быть довольно высоким (±0,2% при частоте вращения ниже 1 Гц), или же необходимо позиционировать вал или осуществлять регулирование момента на валу при низких частотах вращения, то применяется система, имеющая обратную связь по скорости.

Преимущества векторного метода управления асинхронным двигателем:

  • Высокий уровень точности при регулировании скорости вращения вала, несмотря даже на возможное отсутствие датчика скорости,
  • Осуществление вращения двигателя на малых частотах происходит без рывков, плавно,
  • Если установлен датчик скорости, то можно достичь номинального значения момента на валу даже при нулевом значении скорости,
  • Быстрое реагирование на возможное изменение нагрузки – резкие скачки нагрузки практически не отражаются на скорости электропривода,
  • Высокий уровень КПД двигателя, за счет сниженных потерь из-за намагничивания и нагрева.

Несмотря на очевидные преимущества, метод векторного управления имеет и определенные недостатки – большая сложность вычислений, для работы необходимо знание параметров двигателя. Помимо всего прочего колебания значения скорости при постоянной нагрузке значительно больше, нежели при скалярном методе управления. Кстати, существуют такие сферы, где используются электроприводы исключительно со скалярным методом управления. К примеру, групповой электропривод, в котором один преобразователь подпитывает несколько двигателей.