Управление блоком питания с помощью arduino. Цифровой лабораторный блок питания с управлением через пк. Характеристики ATX-блока питания

Часто начинающие электронщики задаются вопросом: можно ли сделать блок питания на Ардуино. Это возможно. Блок питания сломанного компьютера отлично подойдет для создания зарядного устройства для микроконтроллера Ардуино и других приборов, которым требуется электрическое питание. При создании блока питания важно учитывать особенности выбранной модели.

Сегодня мы подробнее разберем как можно с помощью платы Ардуино создать контролируемый блок питания своими руками. После конструирования получится настоящий регулировщик питания, который способен работать в следующих режимах: время отдыха, режим экономии для слабой электроники и работа в десяток ампер на 5 Вольт или 12 Вольт, если это необходимо.

Назначение блока питания на Ардуино

Все виды блоков питания созданы с одной целью – преобразовать полученную из сети переменного тока электрическую энергию для полноценной работы компьютерного устройства. Блок питания для Ардуино будет превращать сетевое переменное напряжение, поступающее в размере 220 Вольт и 50 Гц, в напряжение постоянного характера 5 или 12 Вольт или же в 3,3 Вольт, поддерживается в некоторых системах.

Если требуется блок питания для цифровой схемы, а к этой категории относится системная плата, платформа различных адаптеров и накопители с информацией в виде дисков, нужно настроить рабочее напряжение на 3,3 Вольта.

При конструировании источника питания для двигателей, дисководов и вентиляторов, рабочее напряжение повышается на 9 Вольт. Компьютер не сломается и не выйдет из строя, если напряжение в сети соответствует положенной норме.

Типичный паспорт блоков содержит информацию о том, что источник перерабатывается – требуется положительное напряжение и отрицательное. Для нормальной работы электронных схем и различного вида двигателей необходимо 5+ или 12+ Вольт. Здесь возникает вопрос: зачем нужно отрицательное напряжение? Отрицательное напряжение использовалось в старых компьютерах. Современные устройства работают только с положительным зарядом.

Виды блока питания

Источники питания подразделяют на виды по типу их работоспособности:

  1. Трансформаторный, по-другому линейный.
  2. Импульсный, по-другому инверторный.

Первый вид сделан из трансформатора понижения и выпрямителя. Такая конструкция преобразует переменный ток в постоянный. После этого установлен фильтр в виде конденсатора. Он сглаживает пульсации, тем самым стабилизируя выходные параметры и защищая устройство от коротких замыканий.

Плюсы трансформаторного блока:

  • надежность;
  • легко ремонтировать;
  • конструкция быстро разбирается;
  • практически отсутствуют помехи при работе;
  • низкая стоимость.

Минусов всего 2 – большая масса и маленький КПД.

Еще одна простейшая схема:

Второй вид построен по принципу инверторной системы, где переменное напряжение перерабатывается в постоянное. После этой операции создаются высокочастотные импульсы, которые также проходят трансформацию. Если устройство поддерживает гальваническую развязку, то созданные импульсы будут передаваться трансформатору. В противном случае импульсы переходят прямо к НЧ фильтру, который встроен на выходе электронного прибора.

Для формирования высокочастотных сигналов в импульсный блок питания Ардуино внедрили небольшой по размеру трансформатор. Такая конструкция заметно меньше по габаритам и массе в отличие от трансформаторного источника питания. Чтобы стабилизировать напряжение в сети, необходимо использовать обратную связь с отрицательным показателем. Поэтому на выходе в сети ничего не замкнет, так как здесь держится постоянный и оптимальный уровень напряжения, который не зависит от величины нагрузки.

Схема импульсного блока питания может быть такой:

Плюсы второго вида источников питания:

  • небольшая масса;
  • маленькие габариты;
  • высокий КПД;
  • средняя стоимость.

Кроме того, такой блок имеет дополнительную защиту, которая обеспечивает безопасность при эксплуатации электронного устройства. БП импульсного характера оснащены защитой от внезапных коротких замыканий или поломке компьютерных девайсов.

К минусам можно отнести отсутствие гальванической развязки, при которой ремонтные работы проходят быстро и легко. Помимо этого значительного минуса есть еще 2 – нагрузка на нижний предел ограничена, прибор часто провоцирует помехи высокой частоты. Когда аппарат не набирает требуемую мощность, компьютерное устройство не заработает.

Инвертором именуют девайс, который популярен среди владельцев автомобилей. Он преобразует напряжение 12 или 24 Вольта в переменное на 220 Вольт. Электрический ток в блок подается напрямую от аккумулятора машины. Прибор особенно пригодится в том случае, когда требуется подключить электроприемник, форма сигнала которого не идеальна по синусоидальному стандарту. Перед подключением в сеть необходимо проверить требуемое для работы напряжение во избежание поломки или замыкания.


Плюсы вышеуказанного прибора:

  • компактность;
  • небольшая масса;
  • предусмотрен защитный механизм против скачков напряжения;
  • устройство легко эксплуатировать.

К недостаткам можно отнести большую цену и минимальную надежность платформы управления микропроцессором.

Компоненты устройства

Инструменты, которые необходимы для создания лабораторного блока питания на Ардуино:

  1. Паяльный аппарат.
  2. Ножницы.
  3. Спички или зажигалка для подогрева термоусадочной трубки.

Список деталей:

  1. Термоусадочная трубка.
  2. Резистор 1К, номинал подойдет любой.
  3. Провода с БЛС штырями – 3 штуки.
  4. Удлинитель АТХ кабеля для подключения к материнской плате.

Основные компоненты;

  1. Источник питания АТХ.
  2. Транзисторы, которые поддерживают высокую мощность для коммутации.
  3. Микропроцессор Ардуино примерно на 5 Вольт.

Особенности и характеристика

Чтобы лабораторный блок питания на Аrduino бесперебойно работал, нужно, при подключении схем, быть внимательным и осторожным. Для начала берется красный АТХ провод и подключается к 5+ Вольт. А провод черного цвета подключается к GND.


Затем зеленый провод присоединяется к управляющему выходу. Можно использовать контакт А0. Однако общие выводы цифровых входов и выходов работают по одной схеме. Завершаем операцию подключением АТХ. Теперь микропроцессор Ардуино получает резервный ток, при этом вентилятор выключен.

Для того чтобы электронное устройство работало на всех мощностях, необходимо задать команду:

Const int ctrlPina=15; // Если номер пина равняется D15, при необходимости, можно к другому контакту digitalsWrite(ctrlPina, LOW);

Чтобы выключить вышеуказанную функцию, задаем в программе

DigitalsWrite(ctrlPina, HIGH);

Похожая строчка:

PinMode(ctrlPinа, INPUT);

В конце операции необходимо подключить высокоточную нагрузку. Это можно сделать с любым из разъемов по виду МОЛЕКС блоков АТХ. Управление производится с помощью транзисторов. Если пользователю нужно более высокое напряжение, ток регулируется командами, описанными выше.

Важно! Вы должны быть осторожны, подключая Arduino прямо к + 5В. Если вы также подключите USB-кабель, вы можете получить ток, текущий на USB-порт вашего ПК, поэтому следите за тем, чтобы одновременно подключать только один источник питания.

Спецификация ATX предполагает, что вы можете как удерживать + 5 В так и отключить/разъединить (установить высокое сопротивление), чтобы отключить основное питание.

Вывод

Вариант того, что можно получить смотрите на видео ниже:

Самостоятельно сконструированный блок в домашних условиях обойдется гораздо дешевле магазинного аппарата. Цена электронного устройства в магазинах – от 700 рублей. Сегодня 5 Вольт вполне достаточно для подключения любых микроконтроллеров, работающих под этим напряжением.

Тема питания для arduino очень важна, я решил ей уделить целую статью поскольку сам имел печальный опыт. Так как в основе arduino находиться микроконтроллер, то наша плата становится заложником стабильного питания, при превышении которого плата может выйти из строя и иногда дешевле приобрести новую чем ее ремонтировать. В данной статье мы обсудим как избежать "Гибели" arduino и даже продлить ей жизнь.

Ну как обычно мы начнем с arduino uno r3, для остальных версий arduino все будет похоже.

Приведу немного характеристик arduino uno:

Под рабочим напряжением имеется в виду рабочее напряжение микроконтроллера. Данный микроконтроллер может работать с напряжением от 1,8 до 5 вольт(1.8 - 5.5V for ATmega328P - datasheet). Отсюда уже можно понять что пониженное напряжение для него не страшно, это только может сказаться на работе подключенных датчиков и серийном порте. Но превышение 5.5 вольт является очень критичным, как только напряжение превысит этот показатель то микроконтроллер(далее МК) сгорит. Так же в оригинальных ардуино или копиях оригинала для связи МК с компьютером есть еще одна МК Atmega16u2, данная микросхема отвечает за прошивку основной МК atmega328 и связи ее с компьютером(по сути она преобразует сигнал последовательного порта rs-232 ttl в параллельный usb). Для запуска atmega16u2 необходимо больше напряжение, минимальное напряжение 2.7В (Operating Voltages – 2.7 - 5.5V - datasheet).

В arduino предусмотрено подключение питания 3-мя различными способами:

  1. Питание от USB компьютера или другого устройства
  2. Через разъем для питания
  3. Разъемы GND и Vin на плате

Напряжение от usb поступает напрямую на плату не через стабилизатор, так как в usb стабильное напряжение 5 вольт которое нам подходит. Напряжение в остальных двух случаях проходит через стабилизатор NCP1117ST50T3G который выдает на выходе 5 вольт. Перед стабилизатором в схеме предусмотрен диод D1(M7) он защищает от не правильной полярности. Контакт Vin тоже попадает на стабилизатор.
На схеме часть со стабилизатором и входом обозначена розовым цветом VOLTAGE REGULATOR SUBSYSTEM. Так как в данных платах предусмотрено напряжение 3,3 вольта после получение со стабилизатора 5 вольт или от usb напряжение попадает на второй стабилизатор LP2985-330BVR в результате чего оно понижается до 3,3 вольт (на схеме выделено голубым MULTIPLE INPUT MANAGEMENT SUBSYSTEM). Но и это еще не все, для защиты портов usb на плате предусмотрен предохранитель F1 (500мА) - защита от больших токов. На плате предусмотрено отключение питание usb при наличии достаточного напряжения на входе Vin или разъеме питания. Принцип действия заключается в том, что напряжение Vin попадает на делитель напряжения образованный резисторами RN1A и RN1B, после этого напряжение попадает на компаратор (микросхема LMV358IDGKR) на втором входе (-) 3,3 вольт. Выход компаратора управляет затвором p-канального MOSFET транзистора FDN340P, в случае если напряжение на входе больше 6,6 вольт на затвор попадает положительное напряжение и цепь USBVCC обрывается (отключается питание usb), а если меньше то питание usb идет дальше по схеме и попадает на "шину" +5 и стабилизатор 3,3 вольт. Для примера на входе 7 вольт, после делителя получилось 3,5 вольт и это больше чем 3,3 на втором входе компаратора, а значит на выходе компаратора и затворе транзистора положительное напряжение и как следствие цепь usb отключается.

Поскольку со схемой питания мы разобрались, перейдем к неисправностям.

Неисправности и их решения

1. Нет питание от usb, плата не определяется компьютером

Что делать если ваша плата перестала определяться?! Первым делом нужно проверить напряжение на микроконтроллере atmega16u2, именно она отвечает за загрузку скетча, определения платы и обеспечивает работу терминала. Отсутствие напряжение на микроконтроллере означает потерю связи компьютер-плата. Для начала нужно проверить поступает ли напряжение на плату, удобнее это сделать с обратной стороны. Для того что бы проверить входное напряжение на плате нужно подключить кабель к usb и замерить напряжение на выходах отмеченных на рисунке ниже.

Если там напряжение около 5 вольт значит идем дальше, если нет проверяем кабель и устройство к которому подключаем. Для дальнейшей проверки мы будем пользоваться рисунком ниже.

Поскольку напряжение поступает на плату дальше можно проверять все по цепи питания либо замерить напряжение на микроконтроллере atmega16u2 (на рисунке отмечен синим цветом). Мы будем проверять напряжение на микроконтроллере, это может иногда сэкономить время. Поскольку размеры atmega16u2 не большие мы будем замерять напряжение на контакте конденсатора C7 (отмечен красным, связан с плюсом питания микросхемы) и контакте конденсатора С9 (отмечен красным, связан с плюсом питания микросхемы). При отсутствии напряжения около 5 вольт, есть смысл проверить предохранитель F1 (на схеме рисунке отмечен коричневым цветом). При выходе из строя предохранителя нужно заменить на похожий для токов 500мА, либо запаять перемычку(небезопасно ). Ну а если дело не в предохранителе берем схему и проверяем все по порядку.

Если же напряжение atmega16u2 нормальное (около пяти вольт) то нужно смотреть в сторону контроллера и интерфейса usb, можно проверить входные сопротивления на рисунке отмечены фиолетовым цветом (должны быть номиналом 20ОМ). Если же сопротивления в порядке, следует проверить сам микроконтроллер для это нужно подключить программатор к разъему программирования isp справа от микроконтроллера и попробовать считать с него данные. В случае успеха не стоит радоваться заранее, у микроконтроллера могут выгореть ножки подключенные к усб, но в целом он будет работать. Признаки не исправного микроконтроллера:

  • Сильно греется (за пару секунд нагревается до больших температур)
  • Возрастает энергопотребление
  • Возможно не все ноги микроконтроллера работают

Так же есть небольшая вероятность выхода из строя кварцевого генератора (обведен на рисунке зеленым цветом), можно проверить его осциллографом. В случае неисправности atmega16u2 её необходимо заменить, но её крохотные размеры делают замену очень очень трудной. Можно работать если "жив" основной микроконтроллер atmega328p и без atmega16u2, прошивая атмегу 328-ую программатором через isp разъем, но если atmega16u2 греется то перегревом она может вывести из строя другие элементы.

На фото выпаянный микроконтроллер atmega16u2:

2. Нет питания микроконтроллера (5 Вольт)

У вас подозрение что напряжение а микроконтроллере далеко не 5 вольт или его вовсе нет?! За напряжение 5 вольт от внешнего источника отвечает стабилизатор напряжения NCP1117ST50, при потере питания 5 вольт стоит проверить его. Причинами выхода из строя может быть несколько перегрев, превышение допустимых токов и т.д. Расположение и схема включение показана на рисунке ниже.

Для проверки напряжения на стабилизаторе нужно измерить напряжение между ногами GND(1) и Output(2), оно должно быть 5 вольт. При отсутствии или меньшем напряжении нужно проверить напряжение на входе, для этого нужно замерить напряжение на ногах GND(1) и Input(3) оно должно быть примерно таким как источника питания. При отсутствии напряжения нужно проверить диод D1 (отмечен на рисунке ниже). При низком напряжении на выходе стоит так же проверить конденсаторы С1 и С2 которые расположены под разъемом питания.

Если же конденсаторы в подряде и напряжение на входе нормальное, то следует заменить стабилизатор NCP1117ST50 (при отсутствии такого можно использовать AMS1117 5.0 - применяется в китайских копиях Arduino UNO).

Замена стабилизатора

Для замены стабилизатора без фена (паяльником) я откусываю кусачками три ноги как на рисунке ниже.

Металлическое основание стабилизатора откусывать не надо (оно выполняет функцию теплоотвода), после того как мы ампутировали три ноги его достаточно хорошо прогреть паяльником и снять стабилизатор пинцетом. Я пытался откусить основание и оторвал немного дорожку под ним, это не критично но с точки зрения эстетичности так себе. Осталось выпаять оставшиеся концы ног, после чего Вуаля:

Запаиваем новый стабилизатор и радуемся работоспособности. Таким же методом и меняем стабилизатор (откусыванием ног) 3,3 вольт.

3. Нет напряжения 3,3 вольта

В вашей плате исчезло напряжение 3,3 вольта?! Это пожалуй самый простой сценарий и легко поправимый. За преобразования напряжения в 3,3 вольта отвечает маленькая микросхема LP2985-33DBVR, и с связан ней только один элемент конденсатор С3 1мкф. В случае отсутствия нужного напряжения есть смысл первым делом смотреть в ее сторону. Нам нужно проверить напряжение на её входе и выходе.

Для проверки входного напряжение мы должны проверить напряжение на ноге Vin(1) и GND(2), как на рисунке выше. В случае наличие напряжение там около 5 вольт мы будем проверять выходное напряжение, в противном случае нужно искать по схеме где "обрыв". Для проверки напряжения на выходе стабилизатора необходимо замерить напряжение между контактами Vout(5) и Gnd(2), при нормальной работе там будет 3,3 вольта. Так же особенностью данного стабилизатора является то что у нее есть контакт включения и выключения, те для работы нужно подать на 3-ю ногу высокий уровень сигнала, но в arduino ноги Vin и ON/OFF соединены между собой и на ней будет около 5 вольт при нормальной работе. При желании наличие напряжение на ноге можно замерить между 2 и 3 ногой. Если напряжение на входах присутствует, а на выходе стабилизатора его нет, то данный стабилизатор подлежит замене.

Советы по продлению жизни Arduino.

  • Не стоит подключать сомнительные и не рабочие блоки питания (блок с прыгающим напряжении +-0,4 вольта сжег стабилизатор), лучше выбирать стабилизированные блоки питания.
  • Не допускать замыкание контактов + и -.
  • Ну и хоть и предельное напряжение всегда высокое, но стоит учесть что чем выше разность входного напряжение и напряжения стабилизатора (+5 В) тем больше нагрев стабилизатора. А перегрев стабилизатора может вывести из строя другие элементы платы. Идеальное напряжение на входе будет 6,6-7,6 вольт. Можно использовать и 12 вольт и все будет работать, но если плата будет работать круглосуточно то я рекомендовал бы способ описанный ниже.

Старый блок питания от компьютера можно приспособить в БП для Arduino с большой силой тока. Также он дает стандартное напряжение 3.3В, 5В и 12В для питания практически любых электронных устройств используемых вместе с Arduino.

Необходимые материалы :
1. Компьютерный блок питания
2. Паяльник и припой
3. BLS штырьки
4. DC разъем 2.1 мм

Подключение

Основной разъём блока питания – ATX 20 pin (см. рисунок ниже). Цвета на схеме соответствуют цветам проводов на разъеме. На всех проводах одинакового цвета одинаковое напряжение, т. е. на всех красных проводах +5В, все черные провода GND и так далее. Наиболее полезными для нас проводами являются +5В (красные провода), +12 В (желтые провода) и GND (черные провода). На линиях +5 и +12В ток обычно достаточен для наших нужд.

На линии +3.3В ток также достаточен для нас, но это напряжение редко используется. +5 VSB (+5 постоянного тока), -12В и -5В как правило имеют очень низкий ток и редко используются.

Контакт 14 (зеленый провод) отвечает за включение/выключение. Для включения питания необходимо соединить зеленый провод с GND, то есть соединить 14 и 13 контакты перемычкой.

Большинство блоков питания для работы требуют нагрузку на один или несколько выходов. По ссылке показано, как добавить резистор на линию 5В в качестве нагрузки.

На других меньших разъёмах питания используется та же цветовая кодировка. Например, разъем с желтым, красным и двумя черными проводами имеет +12В (желтый провод), +5В (красный провод) и два GND.

Чтобы питать устройство от 12В, необходимо подключить желтый провод к + устройства, а черный к GND. Чтобы питать устройство от 5В, подключите красный провод к +, а черный провод к GND.

Необходимо замкнуть зеленый провод с любым из проводов GND (черный провод). Для этого можно использовать кусок проволоки или обрезать провода и спаять их вместе.

Припаяйте BLS штырьки к +12В(желтый провод), +5В(красный провод), +3,3В(оранжевый провод), GND(черный провод)

Припаяйте гнездо для питания Arduino. Провод 5В припаяйте к контакту 5В, GND к GND.

Блок питания для Arduino готов!


Этот блок предназначен для домашней лаборатории радиолюбителя. Его выходное напряжение можно регулировать от 0,5 до 15,5 В. Имеется защита от замыкания выхода или превышения допустимого тока нагрузки. Порог её срабатывания можно изменять от 0,2 до 2 А. Информация об установленных напряжении, токе нагрузки и заданном пороге срабатывания токовой защиты выводится на экран ЖКИ от сотового телефона Nokia 5110.

Блок включают и выключают нажатиями на соответствующие кнопки. Третья кнопка даёт возможность временно отключить и вновь включить напряжение на выходе блока. С её же помощью восстанавливают работоспособность блока после срабатывания токовой защиты. При простое без нагрузки более 5 мин блок отключается от сети автоматически.

Схема блока питания изображена на рис. 1. Нажатие на кнопку SB3 подключает обмотку I трансформатора T1 к сети ~230 В. Блок начинает работать, и прежде всего, программа микроконтроллера устанавливает высокий логический уровень напряжения на выходе D1 модуля Arduino Nano, обозначенного на схеме A1. Этим открывается транзистор VT1, реле K1 срабатывает и замкнувшимися контактами K1.1 шунтирует кнопку SB3, которую теперь можно отпустить.

Рис. 1. Схема блока питания

На экране ЖКИ начало работы блока отмечается заставкой в виде двух вращающихся зубчатых колёс (рис. 2), которая сменяется информацией о версии программы (рис. 3). Затем появляется основное изображение (рис. 4) со значениями выходного напряжения, тока нагрузки, отдаваемой в нагрузку мощности (программа вычисляет её как произведение первых двух параметров) и установленного тока срабатывания защиты.

Рис. 2. Заставка на экране ЖКИ

Рис. 3. Информация на экране ЖКИ

Рис. 4. Информация на экране ЖКИ

При нажатии на кнопку SB1 низкий уровень на входе D0 модуля A1 приводит к тому, что программа выводит на экран прощальное сообщение (рис. 5) и устанавливает низкий уровень на выходе D1 модуля A1. Транзистор VT1 закрывается, реле K1 размыкает контакты и этим отключает блок от сети.

Рис. 5. Сообщение на экране ЖКИ

Стабилизатор выходного напряжения собран на ОУ DA1.2 и транзисторе VT2. Коэффициент пропорциональности между установленным переменным резистором R15 задающим напряжением на неинвертирующем входе ОУ DA1.2 и выходным напряжением стабилизатора равен R19/R18+1 (3,2 при указанных на схеме номиналах резисторов R18 и R19). Эти резисторы образуют делитель выходного напряжения, часть которого поступает для измерения на аналоговый вход A6 модуля A1. Задающее напряжение получено из выведенного на вывод D6 модуля A1 образцового напряжения встроенного в этот модуль АЦП, которое можно включить или выключить программно.

Вывод D2 модуля A1 сконфигурирован программой как вход запросов её внешнего прерывания. Если ток нагрузки превысит заданный порог, напряжение на инвертирующем входе компаратора DA2 станет больше, чем на неинвертирующем. Выходной транзистор компаратора откроется и зашунтирует резисторы R9 и R15 цепи регулировки выходного напряжения блока, которое станет нулевым. Одновременно низкий уровень поступит на вход запроса прерывания программы D2. Процедура обработки прерывания выдержит паузу приблизительно 50 мс, а затем, если перегрузка не прекратилась, выключит образцовое напряжение на выходе D6. В результате выходное напряжение блока останется равным нулю и после прекращения перегрузки. Пауза необходима для предотвращения аварийных срабатываний защиты при подключении к блоку нагрузки с конденсаторами большой ёмкости. Сигналом срабатывания защиты служит изображение ладони (рис. 6) на экране ЖКИ. Чтобы вернуть блок в рабочий режим, нужно нажать на кнопку SB2.

Рис. 6. Сигнал срабатывания защиты

Во время нормальной работы блока питания нажатие на кнопку SB2 выключает образцовое напряжение на выходе D6 модуля A2, в результате чего напряжение на выходе блока падает практически до нуля. Сигнализируя об этом, изображение на экране ЖКИ HG1 станет негативным. Повторное нажатие на кнопку SB2 вернёт блок в прежнее состояние.

К аналоговому входу A7 модуля A1 подключён движок переменного резистора R2, которым регулируют порог срабатывания токовой защиты блока. Подбирая резистор R1, устанавливают минимальное значение этого порога.

Вывод D9 сконфигурирован программой микроконтроллера как выход импульсов с ШИМ. В модуле Arduino Nano частота повторения этих импульсов по умолчанию - около 490 Гц. Для удовлетворительного сглаживания импульсов, следующих с такой низкой частотой, и выделения их постоянной составляющей потребовался бы слишком сложный фильтр. Поскольку в среде разработки программ Arduino IDE стандартная функция для изменения этой частоты отсутствует, она была повышена до 3900 Гц прямым изменением константы в соответствующем регистре микроконтроллера:

TCCR1B = TCCR1B & 0b11111000 I 0x02;

Вращение ручки переменного резистора R2 изменяет коэффициент заполнения импульсов на выходе D9. Фильтр R3C1 выделяет из импульсной последовательности постоянную составляющую, которая поступает на неинвертирующий вход компаратора напряжения DA2 и задаёт порог его срабатывания. На инвертирующий вход компаратора поступает с датчика тока (резистора R20) через усилитель на ОУ DA1.1 с коэффициентом усиления 25 пропорциональное току нагрузки блоканапряжение.

Печатная плата для этого блока питания не разрабатывалась. Всё собрано на двух макетных платах размерами 50x75 мм. На одной из них установлен ЖКИ HG1 с резисторами R10-R14, на другой - всё остальное, за исключением транзистора VT2 с теплоотводом и трансформатора T1.

Трансформатор должен быть мощностью не менее 36 В·А и с напряжением на вторичной обмотке около 18 В. Контакты реле K1 должны быть рассчитаны на коммутацию переменного напряжения не менее 250 В. Если номинальное рабочее напряжение обмотки реле меньше выпрямленного диодным мостом VD1, излишек нужно погасить, включив последовательно с обмоткой реле резистор R доб, показанный на схеме рис. 1 штриховой линией.

К статье приложены две компьютерные программы, облегчающие подготовку изображений для вывода на графический ЖКИ. Исходные данные для них - цветные или монохроматические изображения в форматах *.BMP, *.JPG, *.PNG, *.TGA или *.TIFF. Программа GLCD84X48 Converter укладывает это изображение в размеры 84x48 пкс и преобразует его в битовый формат. Она выдаёт результат в виде текстового файла на языке C, пригодного для включения в программу микроконтроллера, и помещает его под именем grap-hics.c на рабочий стол компьютера. Программа OLED_LCD 128X64 I2C con-vertimage работает аналогично, но формирует файл для загрузки в графический дисплей с размерами экрана 128x64 пкс и интерфейсом I 2 C.

Программа для модуля Arduino, библиотеки к ней и программы для компьютера имеются .


Дата публикации: 14.10.2017

Мнения читателей
  • андрей / 05.11.2017 - 13:57
    собрал работает.напрежение под нагрузкой держит стабильно.