Плазменный телевизор. Ремонт плазменных телевизоров (плазменных панелей)

"У меня дома ПЛАЗМА ", - не правда ли, красиво звучит, под этим понимается что-то очень большое и красивое Сейчас "плазмой" дразнят практически все плоские телевизоры, даже маленькие. Согласитесь, слово "плазма" звучит гораздо круче, чем ЖК или LCD, LED (какой-то непонятный набор букв ), этим и объясняется подсознательная тяга к чему-то такому огромному и завораживающе-непонятному слову плазма . И действительно, когда видишь перед собой такою плазменную панель:

то стоишь перед ней и не понимаешь, почему она ещё не у меня дома? Ну что ж, давайте всё-таки разберёмся, что же такое плазменная панель и как она работает. Кто не очень сильно храпел на уроках физики, помнит, что вещество (вода, к примеру или металл...) может находится в трёх состояниях: твёрдом (лёд), жидком (вода) или газообразном (пар), так вот, плазма - это четвёртое состояние вещества. Она представляет собой ионизированный газ (газ, в котором очень много заряженных частичек, как воздух после грозы, только гораздо сильнее)

Если в газ (нейтральный) запустить очень много электронов (они имеют отрицательный заряд "-"), они будут сталкиваться с атомами газа и выбивать из них другие электроны. Атом , потеряв электроны, становится ионом (имеет положительный заряд "+"). Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы притягиваются друг к другу, столкновения "возбуждают" атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов .

В плазменных панелях используются в основном инертные газы - неон и ксенон . В состоянии "возбуждения" они испускают свет в ультрафиолетовом диапазоне, невидимом для человеческого глаза, однако, его можно использовать для высвобождения фотонов видимого спектра

Патент на изобретение "плазменной панели", хотя правильнее говорить "плазменного дисплея" был выписан в 1964 на имена трёх человек: Дональда Битцера , Жене Слоттова и Роберта Вильсона . Первый плазменный дисплей состоял всего из одного пикселя (!!!), естественно, что из него никакого изображения, кроме точки, получить было нельзя, тут был важен сам принцип. Не прошло и десяти лет, как приемлемые результаты были достигнуты, в 1971 году фирме Owens-Illinois была продана лицензия на производство дисплеев Digivue .

В 1983 году Университет Иллинойса заработал ни много ни мало, миллион долларов за продажу лицензии "на плазму" компании IBM - сильнейшему игроку, на то время, в области компьютерных технологий. Перед Вами модель 1981 года "PLATO V ", с монохроматическим дисплеем оранжевого свечения:

Всё бы хорошо, да только LCD дисплеи, появившиеся в начале 90-х, стали уверенно вытеснять "плазму" с рынка. К сожалению, создать маленькие пиксели (как у LCD) было не так просто, да и яркость с контрастностью оставляли желать лучшего

Никто не знает, чтобы было дальше, если бы технологией плазменных панелей не занялась компания "Matsushita ", известная сейчас как "Panasonic ". В 1999 году был, наконец, создан, перспективный 60-дюймовый прототип с замечательными яркостью и контрастностью, превосходящими их "жидкокристаллические" аналоги Вот как выглядит плазменный телевизор без задней крышки:

Давайте посмотрим, как устроена плазменная панель и каким образом она работает. В плазменных панелях ксенон и неон содержится в сотнях маленьких микрокамер , расположенных между двумя стеклами. С обеих сторон, между стеклами и микрокамерами, располагаются два длинных электрода . Управляющие электроды расположены под микрокамерами, вдоль тылового стекла. Прозрачные сканирующие электроды , окруженные слоем диэлектрика и покрытые защитным слоем оксида магния, расположены над микрокамерами, вдоль фронтального стекла

Электроды расположены крест-накрест во всю ширину экрана. Сканирующие электроды расположены горизонтально, а управляющие электроды – вертикально. Как вы можете видеть ниже, на диаграмме, вертикальные и горизонтальные электроды формируют прямоугольную сетку. Для ионизации газа в определенной микрокамере, процессор заряжает электроды непосредственно на пересечении с этой микрокамерой. Тысячи подобных процессов происходят за долю секунды, заряжая по очереди каждую микрокамеру.

Когда пересекающиеся электроды заряжены (один отрицательно, а другой положительно), через газ в микрокамере проходит электрический разряд . Как было сказано ранее, этот разряд приводит заряженные частицы в движение, вследствие чего атомы газа испускают фотоны ультрафиолета , которые, в свою очередь, заставляют светиться фосфорное покрытие микрокамер, выбивая из них фотоны основных видимых цветов .

Каждый пиксель плазменной панели состоит из трёх микрокамер (субпикселей): красного зелёного и синего (как в кинескопных телевизорах), чем меньше размер пикселей в дисплее, тем более чётким получается изображение

Плазменные дисплеи отличаются хорошей яркостью, чёткостью и красивой цветопередачей . В отличии от LCD и LED (жидкокристаллических дисплеев), которые работают на "просветку", плазма светит сама , обеспечивая красивый и глубокий чёрный цвет и замечательную контрастность изображения практически с любого угла обзора. Цифровых тормозов и глюков на ней практически незаметно, однако, разер пикселей немного больше, чем у ЖК, поэтому размер плазменной панели (обычно) начинается от 32 дюймов

К недостаткам плазмы можно отнести немалую стоимость и большое потребление электроэнергии. Если у Вас дома есть маленькие дети, учтите, что одного удара мячиком или другой игрушкой может быть достаточно для того, чтобы вся плазменная панель отправилась на свалку (там нет 5-10 сантиметрового стекла перед экраном, как в кинескопах)

Частые вопросы: выгорают ли пиксели на плазме и радиоактивное излучение ? Ультрафиолет действительно опасен, но, благодаря переднему защитному стеклу, величина его опасности равна нулю. Вы пробовали позагорать за стеклом? Тут тоже самое, стекло не пропускает ультрафиолетовые лучи, поэтому опасаться абсолютно нечего. Выгорание пикселей - хоть многие утверждают, что его нет, но оно есть , поэтому не нужно долгое время оставлять неподвижную картинку на экране (долго - это несколько дней, за час-два ничего не случится)

Помните, что телевизор с плазменной панелью, какой бы он не был хороший, тоже может выйти из строя, а его ремонт - вещь весьма сложная и недешёвая, покупая такого красавца, как на картинке, будьте готовы к его соответствующему обслуживанию.

Plasma Display Panel (PDP)

Всего лишь пятнадцать-двадцать лет назад лет назад писатели-фантасты в один голос предрекали появление в будущем огромных и абсолютно плоских телевизионных экранов. И вот теперь сказка наконец-то стала былью, и такой экран может купить любой желающий.

Устройство плазменных панелей

Принцип действия плазменной панели основан на свечении специальных люминофоров при воздействии на них ультрафиолетового излучения. В свою очередь это излучение возникает при электрическом разряде в среде сильно разреженного газа. При таком разряде между электродами с управляющим напряжением образуется проводящий “шнур”, состоящий из ионизированных молекул газа (плазмы). Поэтому-то газоразрядные панели, работающие на этом принципе, и получили название “газоразрядных ” или, что тоже самое – “плазменных ” панелей.

Конструкция

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными поверхностями. В качестве газовой среды обычно используется неон или ксенон.

Разряд в газе протекает между прозрачным электродом на лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение, которое, в свою очередь, инициирует видимое свечение люминофора.

В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости.

Люминофоры излучают один из основных цветов: красный , зелёный или синий . Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично.

Первая трудность - размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному.

Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова , поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен.

Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

Зелёный : Zn 2 SiO 4:Mn 2+ / BaAl 12 O 19:Mn 2+
Красный : Y 2 O 3:Eu 3+ / Y0,65Gd 0,35 BO 3:Eu 3
Синий : BaMgAl 10 O 17:Eu 2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280×768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах.

В ЖК-панелях принцип формирования картинки принципиально иной — там источник света находится позади матрицы, а для разделения цветов на RGB используются фильтры.

Почему плазменные панели лучше

Во-вторых , плазменная панель исключительно универсальны и позволяют использовать её не только в качестве телевизора, но и как дисплей персонального компьютера с большим размером экрана. Для этого все модели плазменных панелей помимо видеовхода (как правило, это обычный AV вход и вход S-VHS) оборудуются еще и VGA-входом. Поэтому такая панель будет незаменима при проведении презентаций, а также при использовании в качестве многофункционального информационного табло при ее подключении к выходу персонального компьютера или ноутбука. Ну, а поклонники домашнего мультимедиа и компьютерных игр будут просто в восторге: только представьте себе насколько выигрышнее будет выглядеть по сравнению с 17″ монитором на 42″ экране изображение, к примеру, кабины космического звездолета или виртуальное поле боя с космическими пришельцами!

В-третьих , “картинка” плазменной панели по своему характеру очень напоминает изображение в “настоящем” кинотеатре. Благодаря этому своему “кинематографическому” акценту плазма сразу же полюбилась поклонникам “домашнего кино” и прочно утвердилась как кандидат N1 в качестве высококачественного средства отображения в домашних кинотеатрах высокого класса. Тем более что размера экрана в 42″ в большинстве случаев оказывается вполне достаточно. Очевидно в расчете на “кинотеатральное” применение большинство плазменных панелей выпускается с форматом изображения 16:9, ставшем de-facto стандартом для систем домашнего театра.

В-четвертых , при столь солидном экране плазменные панели имеют исключительно компактные размеры и габариты. Толщина панели с размером экрана в 1 метр не превышает 9-12 см, а масса составляет всего 28-30 кг. По этим параметрам сегодня ни один другой тип средств отображения не может составит плазме хоть какую-то конкуренцию. Достаточно сказать, что цветной кинескоп со сравнимым размером экрана имеет глубину 70 см и весит более 120-150 кг! Проекционные телевизоры с обратной проекцией также особой стройностью не отличаются, а телевизоры с фронтальной проекцией, как правило, имеют малые яркости изображения. Светотехнические же параметры плазменных PDP панелей исключительно высоки: яркость изображения свыше 700 кд/м 2 при контрастности не менее 500:1. И что очень важно, нормальное изображение обеспечивается в чрезвычайно широком угле зрения по горизонтали: в 160О. То есть уже сегодня PDP вышли на уровень самых передовых рубежей качества, достигнутых кинескопами за 100 лет своей эволюции. А ведь большеэкранные плазменные панели серийно выпускаются менее 5 лет, и они находятся в самом начале пути своего технологического развития.

В-пятых , плазменные панели чрезвычайно надежны. По данным фирмы Fujitsu их технический ресурс составляет не менее 60 000 часов (у очень хорошего кинескопа 15 000-20 000 часов), а процент брака не превышает 0.2%. То есть на порядок меньший общепринятых для цветных кинескопных телевизоров 1.5-2 %.

В-шестых , PDP практически не подвержены воздействию сильных магнитных и электрических полей. Это позволяет, к примеру, использовать их в системе домашнего театра совместно с акустическими системами с неэкранированными магнитами. Иногда это может быть важным, так как в отличие от кинотеатральной акустики многие “обычные” HI-FI колонки выпускаются с неэкранированной магнитной цепью. В традиционном домашнем кинотеатре на основе телевизора использовать эти колонки в качестве фронтальных очень затруднительно ввиду их сильного влияния на кинескоп телевизора. А в AV-системе на основе PDP – сколько угодно.

В-седьмых , благодаря малой глубине и относительно небольшой массе плазменные панели легко разместить в любом интерьере и даже повесить на стену в удобном для этого месте. С другим типом дисплея подобный фокус вряд ли удастся.

Прочие достоинства плазменной панели

  • Большая диагональ . Производить ЖК-матрицы больших диагоналей очень дорого и потому экономически невыгодно. С плазменными панелями всё ровно наоборот.
  • Панель не мерцает . Не мерцает, а значит не утомляет глаза, в отличие от обычных ЭЛТ-телевизоров с частотой обновления 50 Гц.
  • Лучшая цветопередача . Современные плазменные телевизоры способны отображать до 29 миллиардов цветовых оттенков. Это по праву считается одним из основных преимуществ плазмы.
  • Большие углы обзора . Ячейки плазменной панели светятся сами, им не нужны никакие «затворы», как в ЖК-панелях, регулирующие количество проходящего света. Поэтому угол обзора плазменной панели — почти 180 градусов во всех направлениях.
  • Время отклика . Время отклика плазменной панели аналогично ЭЛТ, то есть гораздо меньше, чем у любого ЖК-телевизора.
  • Яркость и контрастность . Контрастность плазменных панелей значительно выше, чем у ЖК-телевизоров. У современной панели она может достигать 10000:1. А яркость плазм абсолютно равномерна, поскольку подсветка в традиционном её понимании отсутствует.
  • Компактные габариты . Среднестатистическая плазменная панель не толще 10 см. Её можно легко прикрутить к стене, заказав специальный кронштейн.

Ложка дёгтя

  • Остаточное свечение . Эффект остаточного свечения характерен только для плазменных панелей. Это связано с тем, что регулярно активируемый газ излучает больше ультрафиолетового цвета. Неравномерность уровня яркости возникает, когда наработка разных ячеек от момента включения сильно отличается друг от друга. Говоря проще, если вы долго смотрите один и тот же канал, то его знак будет некоторое время просвечиваться на экране после переключения канала. Производители панелей, как могут, борются с этим недостатком, применяя скринсерверы и другие более хитрые технологии.
  • Деградация люминофора . Этот тот же процесс, что можно наблюдать и в обычных ЭЛТ-телевизорах. Время жизни панели исчисляется до потери половины яркости экрана. Для плазмы последнего поколения – это примерно 60000 часов.
  • Зернистость . Дешёвые плазменные телевизоры без поддержки HD страдают этим эффектом больше всего. Обращайте на него внимание при выборе бюджетной модели, и, если вдруг он будет раздражать, — отложите покупку до тех пор, пока не сможете приобрести модель более высокого класса.
  • Шумность . Большая часть выпускаемых сегодня плазм имеет вентиляторы охлаждения. Имейте это в виду и обязательно послушайте, насколько сильно шумит панель перед покупкой.

Таким образом, единственным серьезным на сегодня недостатком плазменных панелей по большому счету является только их большая цена. Впрочем по сравнению со стоимостью других устройств отображения информации с аналогичным размером экрана их относительная цена в пересчете на 1 см (или дюйм) диагонали изображения оказывается не столь большой.

Разбор характеристик

Принцип дальнейшего повествования будет таков: мы возьмём типовую табличку технических характеристик плазменной панели и пройдёмся по тем её строкам, на которые стоит обратить внимание. Итак:

Диагональ, разрешение

Диагонали плазменных панелей начинаются с 32-дюймов и заканчиваются на 103-х. Из всего этого диапазона, как уже было сказано выше, в России пока лучше всего продаются 42-дюймовые панели с разрешением 853×480 точек. Это разрешение называется EDTV (Extended Definition Television) и подразумевает под собой «телевидение повышенной чёткости». Такого телевизора будет достаточно для комфортного времяпрепровождения, поскольку в России пока не существует бесплатного телевидения высокой чёткости (High Definition TV — HDTV). Однако HDTV-телевизоры, как правило, технически более совершенны, лучше обрабатывают сигнал и даже способны «подтягивать» его до уровня HDTV. Получается, конечно, не очень, но эти попытки ценны сами по себе. К тому же, в магазинах уже можно купить фильмы, записанные в формате HD DVD.

Покупая HDTV-телевизор, обратите внимание на формат поддерживаемого сигнала. Самый распространённый — 1080i, то есть, 1080 строк с чересстрочным чередованием. Чересстрочное чередование принято считать не очень хорошим, поскольку будут заметны зубчики по краям объектов, но этот недостаток нивелируется высоким разрешением. Поддержка более совершенного формата 1080p с прогрессивной развёрткой пока встречается только на очень дорогих телевизорах последнего, девятого поколения. Существует также альтернативный формат 1080i — это 720p с меньшим разрешением, но зато с прогрессивной развёрткой. На глаз различие между двумя картинками найти будет сложно, так что при прочих равных 1080i предпочтительнее. Впрочем, большое количество телевизоров одновременно поддерживают и 720p, и 1080i, так что в этом плане никаких проблем с выбором у вас возникнуть не должно.

Пару слов скажем о различных технологиях улучшения изображения. Технологически так сложилось, что качество картинки панели в немалой степени зависит и от разнообразных программных ухищрений. У каждого производителя они свои, и бывает, что только их грамотное функционирование определяет все видимые глазу отличия в картинке между двумя телевизорами разных марок, но одной стоимости. Однако выбирать телевизор по количеству этих технологий всё же не стоит — лучше всмотреться в качество их работы, благо любоваться плазмами можно в любом нормальном магазине видеотехники сколько угодно времени.

Выбирая диагональ, в первую очередь имейте в виду – чем она больше, тем дальше от телевизора нужно сидеть. В случае 42-дюймовой панели ваш любимый диван должен быть удалён от неё на расстояние не менее трёх метров. Можно, конечно, сесть и ближе, но особенности формирования изображения на панели вас наверняка будет раздражать и мешать просмотру.

Соотношение сторон

Все плазменные телевизоры имеют панели с . Стандартная телевизионная картинка 4:3 на таком экране будет смотреться нормально, просто неиспользуемая площадь экрана по бокам изображения будет залита чёрным. Или серым, если телевизор позволяет менять цвет заливки. Телевизор может попробовать растянуть изображение на весь экран, но результат этой операции, как правило, выглядит печально. В некоторых магазинах плазмы «вещают» именно в таком режиме — видимо, персоналу просто лень искать в меню галочку отключения функции масштабирования. В в России уже началось. По умолчанию такое соотношение сторон используется только в HDTV.

Яркость

Существуют две характеристики панели, связанные с яркостью, — это яркость панели и яркость всего телевизора. Яркость панели нельзя оценить на готовом продукте, потому что перед ней всегда стоит светофильтр. Яркость же телевизора — это наблюдаемая яркость экрана после прохождения света через фильтр. Фактическая яркость телевизора никогда не превышает половины яркости панели. Однако в характеристиках телевизора указывается изначальная яркость, которую вы никогда не увидите. Это первый маркетинговый трюк.

Ещё одна особенность цифр, указываемых в спецификациях, связана с методом их получения. В целях защиты панели её яркость в расчёте на точку уменьшается пропорционально увеличению суммарной площади засветки. То есть если вы видите в характеристиках значение яркости 3000 кд/м2, знайте — она получается только при небольшой засветке, например, когда на чёрном фоне отображается несколько белых букв. Если инвертировать эту картинку, мы получим уже, например, 300 кд/м2.

Контрастность

С этим показателем также связаны две характеристики: контрастность при отсутствии окружающего света и в присутствии оного. Значение, указываемое в большинстве спецификаций, — это контрастность, замеренная в тёмной комнате. Таким образом, в зависимости от освещения, контрастность может падать с 3000:1 до 100:1.

Интерфейсные разъёмы

Подавляющее число плазменных телевизоров имеет, как минимум, SCART, VGA, S-Video, компонентный видеоинтерфейс, а также обычные аналоговые аудиовходы и выходы. Рассмотрим эти и другие разъёмы подробнее:

  • SCART — количество этих разъёмов может достигать трёх. Одно время они считались наиболее совершенными, пока не появился HDMI. Через SCART одновременно передаются аналоговый видеосигнал и стереозвук.
  • HDMI — кто-то может назвать это эволюционным преемником SCART. Через HDMI можно передавать HD-сигнал в разрешении 1080p вместе с восьмиканальным звуком. Благодаря выдающейся пропускной способности и миниатюрности разъёма, интерфейс HDMI поддерживают уже некоторые видеокамеры и DVD-плееры. А компания Panasonic поставляет со своими плазмами пульт с функцией HDAVI Control, позволяющей управлять не только телевизором, но и другой техникой, подключённой к нему через HDMI.
  • VGA — это обычный компьютерный аналоговый разъём. Через него к плазме можно подключить компьютер.
  • DVI-I — цифровой интерфейс для подключения всё того же компьютера. Однако встречается и другая техника, работающая через DVI-I.
  • S-Video — чаще всего используется для подключения DVD-проигрывателей, игровых приставок и, в редких случаях, компьютера. Обеспечивает хорошее качество изображения.
  • Компонентный видеоинтерфейс — интерфейс для передачи аналогового сигнала, когда каждая его составляющая идёт по отдельному кабелю. Благодаря этому компонентный сигнал — самый качественный их всех аналоговых. Для передачи звука используются аналогичные RCA-разъемы и кабели — каждый канал «бежит» по своему проводу.
  • Композитный видеоинтерфейс (на одном разъёме RCA) — в противовес компонентному обеспечивает наихудшее качество передачи сигнала. Используется один кабель и, как результат, — возможна потеря цветности и чёткости изображения.

Акустическая система

Не стоит питать иллюзий, что встроенные в телевизор маломощные динамики могут звучать хорошо. Даже если производитель клянётся в реализации многочисленных «улутшательных» технологии, звучать плазма будет на уровне, достаточном разве что для просмотра новостей. Впрочем, некоторые наиболее честные производители на наличии колонок внимания потребителя даже не акцентируют — да, они есть, но не более того. Насладиться настоящим звуком позволят только внешние и не самые дешёвые акустические системы.

Энергопотребление

Энергопотребление плазменного телевизора меняется в зависимости от отображаемой картинки. Поэтому не пугайтесь, если вам скажут что скромная 42-дюймовая панель «ест» 360 Вт. Уровень, указываемый в спецификации, отражает максимальное значение. При полностью белом экране потреблять плазменная панель будет уже 280 Вт, а при полностью чёрном — 160 Вт.

В заключение

В заключение хочется дать пару советов. Самый главный — тщательно проверяйте панель на наличие «битых» пикселей, а точнее, точек, которые постоянно горят одним цветом. В случае обнаружения — требуйте замены, поскольку это считается недопустимым браком вне зависимости от количества таких пикселей. Не дайте недобросовестному продавцу провести себя — до пяти «битых» пикселей формально допустимы лишь для ЖК-панелей, да и то не самого высокого класса. И ещё имейте в виду, что некоторые модели телевизоров поставляются вместе с напольной подставкой, то есть, тумбочкой. Этот комплект выйдет дороже, но зато подставка будет точно гармонировать с телевизором и обеспечит ему хорошую устойчивость.

Общая оценка материала: 4.9

АНАЛОГИЧНЫЕ МАТЕРИАЛЫ (ПО МЕТКАМ):

Отец видеозаписи Александр Понятов и AMPEX

Решила разобраться в такой понтовой теме как плазменный дисплей.

Многие люди мучаются вопросом: «Шо же такое плазменный дисплей и насколько это круто, а лучше – насколько это удобно?». Мы разберем эту тему по винтикам и узнаем всю соль!

Название

Почему мы начали с названия? Правильно, существует хотя-бы 3 различных, и часто употребляемых варианта данному устройству (Дисплей, панель, экран), с которыми нужно разобраться в первую очередь.
Панель – наиболее звучное и употребляемое название данного типа экрана. Выражение «У меня дома плазменная панель» - стало чем-то притягательным и мощным, ибо мы в подсознании представляем себе нечто большое, высокотехнологичное с сочной картинкой. Ирония в том, что слово панель неправильно употреблять по отношению к , монитору и т.д. Стилистически верное слово, неверно грамматически.
Дисплей – второе по употребляемости, верно и грамматически. Поскольку патент зарегистрированный тремя мужиками, которые первыми притворили эту технологию в жизнь, содержал именно слово Дисплей.
Экран – вполне, почему бы и нет. Синоним к слову дисплей.

Сравниваем

Данные мы будем приводить в сравнении с , это очевидно. Да, имеют свои плюшки, но они не используются в том сегменте, где плазма и ЖК.

Преимущества

  • Понты.
  • Реалистичность изображения(спорно).
  • Изначально глубокая передача цветов, но это меркнет на фоне новых подсветок LED и OLED, которые уже передают лучше цвета.

Недостатки

  • Цена на устройства с такими экранами и наличием функций выше, чем аналог с ЖК.
  • Выше энергопотребление.
  • Из-за своего строения пиксели быстро выгорают при долго включенной статичной картинке. Как следствие – использование только для просмотра динамичных сцен.
  • Большие пиксели, вследствие чего у относительно маленьких экранов плохое разрешение.
  • Наименьшая ширина дисплеев больше наименьшей ширины ЖК.

Конструкция

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключённых между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами(сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Особенности конструкции

  • суб-пиксель плазменной панели обладает следующими размерами 200 мкм x 200 мкм x 100 мкм;
  • передний электрод изготовляется из оксида индия и олова, поскольку он проводит ток и максимально прозрачен.
  • при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома, несмотря на его непрозрачность;
  • для создания плазмы ячейки обычно заполняются газами - неоном или ксеноном (реже используется гелий и/или аргон, или, чаще, их смеси) с добавлением ртути.

Принцип работы

  1. инициализация, в ходе которой происходит упорядочение положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подаётся импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочение расположения ионной газовой среды, на второй ступени разряд в газе, а на третьей - завершение упорядочения.
  2. адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подаётся положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.
  3. подсветка, в ходе которой на шину сканирования подаётся положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, сменой полярности импульсов обеспечивается многократный разряд ячейки.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит ёмкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение проходя через переднюю стеклянную пластину попадает в глаз зрителя.

Вывод: Если вы страшный мажор, и не собираетесь даже смотреть на этот телевизор. Покупайте самый большой размер дисплея в наличии в магазине и смело бабахайте свой домашний кинотеатр, затем сказать, что у вас всё это есть дома и пригласить кучу друзей, которые также туда не взглянут. Правда, вы мой дорогой читатель из-за своего кошелька должны придерживаться голоса разума и брать телевизор или монитор только с ЖК экраном.

Главной проблемой развития технологий LCD для сектора настольных компьютеров, похоже, является размер монитора, который влияет на его стоимость. Однако, невзирая на это LCD мониторы сегодня стали бесспорными лидерами рынке дисплеев. Тем не менее, существуют и другие технологии, которые создают и развивают разные производители, и некоторые из этих технологий носят название PDP (Plasma Display Panels), или просто "plasma", и FED (Field Emission Display).

Plasma-мониторы

Разработка плазменных дисплеев, начатая еще в 1968 г., базировалась на применении плазменного эффекта, открытого в Иллинойсском университете в 1966 г. Сейчас принцип действия монитора основан на плазменной технологии: используется эффект свечения инертного газа под воздействием электричества. Примерно по той же технологии работают неоновые лампы. Заметим, что мощные магниты, входящие в состав динамических излучателей звука, расположенных рядом с экраном, никак не влияют на изображение, поскольку в плазменных устройствах, как и в ЖК, отсутствует такое понятие, как электронный луч, а заодно и все элементы ЭЛТ, на которые воздействует вибрация.

Формирование изображения в плазменном дисплее происходит в пространстве шириной примерно 0,1 мм между двумя стеклянными пластинами, заполненном смесью благородных газов - ксенона и неона. На переднюю, прозрачную пластину нанесены тончайшие прозрачные проводники, или электроды, а на заднюю - ответные проводники. Подавая на электроды электрическое напряжение, можно вызвать пробой газа в нужной ячейке, сопровождающийся излучением света, который и формирует требуемое изображение. Первые панели, заполнявшиеся в основном неоном, были монохромными и имели характерный оранжевый цвет. Проблема создания цветного изображения была решена путем нанесения в триадах соседних ячеек люминофоров основных цветов - красного, зеленого и синего и подбора газовой смеси, излучающей при разряде невидимый глазом ультрафиолет, который возбуждал люминофоры и создавал уже видимое цветное изображение.

Однако, у традиционных плазменных экранов на панелях с разрядом постоянного тока имеется и ряд недостатков, вызванных физикой процессов, происходящих в данном типе разрядной ячейки. Дело в том, что при относительной простоте и технологичности панели постоянного тока, уязвимым местом являются электроды разрядного промежутка, которые подвергаются интенсивной эрозии. Это заметно ограничивает срок службы прибора и не позволяет достичь высокой яркости изображения, ограничивая ток разряда. Как следствие, не удаётся получить достаточного количества оттенков цвета, ограничиваясь в типичном случае шестнадцатью градациями, и быстродействия, пригодных для отображения полноценного телевизионного или компьютерного изображения. По этой причине плазменные экраны обычно использовались в качестве табло для демонстрации алфавитно-цифровой и графической информации. Проблема принципиально решается на физическом уровне путем нанесения на разрядные электроды диэлектрического защитного покрытия.

В современных плазменных дисплеях, используемых в качестве мониторов для компьютера используется так называемая технология - plasmavision - это множество ячеек, иначе говоря пикселей, которые состоят из трех субпикселей, передающих цвета - красный, зеленый и синий. Газ в плазменном состоянии используется, чтобы реагировать с фосфором в каждом субпикселе, чтобы произвести цветной цвет (красный, зеленый или синий). Каждый субпиксел индивидуально управляется электроникой и производит более чем 16 миллионов различных цветов. В современных моделях каждая отдельная точка красного, синего или зелёного цвета может светиться с одним из 256 уровней яркости, что при перемножении даёт около 16,7 миллионов оттенков комбинированного цветного пикселя. На компьютерном жаргоне такая глубина цвета называется “True Color” и считается вполне достаточной для передачи изображения фотографического качества.

Говоря о функциональных возможностях плазменного монитора можно сказать, что экран обладает следующими функциональными преимуществами:

  • Широкий угол обзора как по горизонтали, так и по вертикали (160° градусов и более).

  • Очень малое время отклика (4 мкс по каждой строке).

  • Высокая чистота цвета, эквивалентная чистоте трех первичных цветов ЭЛТ.

  • Простота производства крупноформатных панелей, недостижимая при тонкопленочном технологическом процессе.

  • Малая толщина (газоразрядная панель имеет толщину около одного сантиметра или менее, а управляющая электроника добавляет еще несколько сантиметров).

  • Компактность (глубина не превышает 10 - 15 см) и легкость при достаточно больших размерах экрана (40 - 50 дюймов).

  • Высокую скорость обновления (примерно в пять раз лучше, чем у ЖК-панели).

  • Отсутствие мерцаний, и смазывания движущихся объектов, возникающих при цифровой обработке.

  • Высокая яркость, контрастность и четкость при отсутствии геометрических искажений изображения.

  • Широкий температурный диапазон.

  • Отсутствие проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям.

  • Отсутствие неравномерности яркости по полю экрана.

  • 100-процентное использование площади экрана под изображение.

  • Отсутствие рентгеновского и других вредных для здоровья излучений, поскольку не используются высокие напряжения.

  • Невосприимчивость к воздействию магнитных полей.

  • Отсутствие необходимости в юстировке изображения.

  • Механическая прочность.

  • Широкий температурный дипазон.

  • Небольшое время отклика позволяет использовать их для отображения видео- и телесигнала.

  • Более высокая надежность.

Все это делает плазменные дисплеи очень привлекательными для использования. Однако, к числу недостатков можно отнести ограниченную разрешающую способность большинства существующих плазменных мониторов, которая не превышает 640х480 пикселей. Исключение составляет модели PDP-V501MX и 502MX фирмы Pioneer. Обеспечивая реальное разрешение 1280х768 пиксел, данный дисплей имеет максимальный на сегодняшний день размер экрана 50 дюймов по диагонали (110х62 см) и хороший показатель по яркости (350 Nit), за счет новой технологии формирования ячеек, и улучшенный контраст. К недостаткам плазменных дисплеев также можно отнести невозможность "сшивания" нескольких дисплеев в "видеостену" с приемлемым зазором из-за наличия широкой рамки по периметру экрана.

Тот факт, что размер коммерческих плазменных панелей обычно начинается с сорока дюймов, свидетельствует о том, что производство дисплеев меньшего размера экономически нецелесообразно, поэтому мы не видим плазменные панели, скажем, в портативных компьютерах. Это предположение подкрепляется и другим фактом: уровень энергопотребления таких мониторов подразумевает подключение их к сети и не оставляет никакой возможности работы от аккумуляторов. Еще один неприятный эффект, известный специалистам, - это интерференция, "перекрывание" микроразрядов в соседних элементах экрана. В результате подобного "смешивания" качество изображения, естественно, ухудшается.

Также к недостаткам плазменных дисплеев следует отнести то, что например средняя яркость белого цвета плазменных дисплеев составляет на настоящий момент порядка 300 кд/м2 у всех основных производителей.

Общая характеристика методов вывода изображений

Существуют два основных метода вывода изображения: векторный метод и растровый метод.

Векторный метод . При этом методе рисующий инструмент прорисовывает только изображение фигуры и его траектория движения определяется выводим изображением. Изображение состоит из графических примитивов: отрезки прямых –векторы, дуги, окружности и т.д. ввиду сложности построения системы управления лучом, обеспечивающей быстрое и точное по сложной траектории этот метод пока не нашел широкого применения.

Растровый метод сканирует всю поверхность вывода изображения и обеспечивает рисующий элемент, который способен оставлять видимый след. Траектория движения инструмента постоянна и не зависит от выводимого изображения, но инструмент может рисовать, а может не рисовать отдельные точки. В случае использования Видео монитора, как инструмента рисующего изображение является управляемый луч для черно-белого изображения и три базовых луча (Красный, Зеленый, Синий) для цветного изображения. Луч построчно сканирует экран и вызывает свечение люминофора, нанесенного на внутреннюю поверхность экрана, рис. 29.

При этом, когда луч движется слева направо, он включен, а когда возвращается справа налево он выключен. Каждая строка разбита на некоторое количество точек – пикселей (Picture Elements-элементарные картинки), засветкой каждой из которых может управлять устройство, формирующее изображение (графическая карта).

Рис. 29 – Прогрессивная развертка

В системах с прогрессивной или нечередующейся разверткой луч идет по тем же строкам в различных кадрах (рис. 29), а в системах с чересстрочной разверткой луч пройдет по строкам, смещенным на половину шага строки, и поэтому всю поверхность кадра луч проходит за два цикла кадровой развертки. Это позволяет в два раза снизить частоту строчной развертки, а следовательно и скорость вывода точек изображения на экран (рис. 30).

Рис. 30 – Чересстрочная развертка

Так, как инерционность зрения человека находится на частоте 40-60 Гц, то частота смена кадра не должна быть ниже этого значения, чтобы человек не мог заметить эту смену, т.е. на уровне 50Гц. Для обеспечения качественного изображения на экране луч должен иметь как можно больше количество светящихся точек на экране. Например: 600 строк по 800 точек каждая строка. Следовательно частота строк составит:

50Гц х (600)=30 000 Гц= 30 кГц

При этом, для вывода каждой точки необходима частота:

30кГц х 800= 24000кГц= 48 мГц

А это уже высокая частота для электронных схем.

Кроме того, соседние точки выводимого сигнала не связаны друг с другом, поэтому частоту управления интенсивностью луча должна быть еще увеличена на 25% и тогда составит около 60 мГц.

Такую частоту пропускания должны обеспечивать все устройства видеотракта: видеоусилители, сигнальные линии интерфейсов и сам графический адаптер. На всех этих стадиях обработки и передачи сигнала высокая частота создает технические трудности. Для уменьшения частоты строк обеспечивают чересстрочную развертку изображения за один полукадр:

    четные строки засвечиваются в одном полукадре;

    нечетные строки – в другом полукадре.

Однако, качество изображения требует увеличение частоты кадра с целью исключения мерцания изображения, этого же требует и увеличение размера экрана монитора, на которое выводится само изображение. При этом, чем выше частота, тем ниже производительность графической системы при построении изображений.

Таким образом, существуют некоторые оптимальные соотношения работы графического редактора и монитора вывода изображения: графический редактор является задающим устройством, а монитор со своими генераторами разверток должен обеспечивать заданные параметры синхронизации разверток луча и кадра.

Классификация мониторов

Монито́р - устройство, предназначенное для визуального отображения информации. Современный монитор состоит из корпуса, блока питания, плат управления и экрана. Информация (видеосигнал) для вывода на монитор поступает с компьютера посредством видеокарты, либо с другого устройства, формирующего видеосигнал.

По виду выводимой информации мониторы делятся на:

    алфавитно-цифровые [система текстового (символьного) дисплея (character display system) – начиная с MDA]

    • дисплеи, отображающие только алфавитно-цифровую информацию;

      дисплеи, отображающие псевдографические символы.

    графическиедля вывода текстовой и графической (в том числе видео) информации.

    • векторные (vector-scan display) – лазерное световое шоу;

      растровые (raster-scan display) – используется практически в каждой графической подсистеме PC.

По типу экрана:

    ЭЛТ - на основе электронно-лучевой трубки (англ.cathode ray tube, CRT);

    ЖК - жидкокристаллические мониторы (англ.liquid crystal display, LCD);

    Плазменный - на основе плазменной панели(plasma display panel, PDP, gas-plazma display panel);

    Проектор - видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе;

    OLED-монитор - на технологии OLED(англ.organic light-emitting diode - органический светоизлучающий диод).

По виду управления различают:

    Цифровые;

    Аналоговые.

По размерности отображения:

    двухмерный (2D) - одно изображение для обоих глаз

    трехмерный (3D) - для каждого глаза формируется отдельное изображение для получения эффекта объема.

По типу интерфейсного кабеля

    композитный;

    раздельный;

Электронно-лучевые мониторы

Самым важным элементом такого монитора является кинескоп, называемый также электронно-лучевой трубкой. ЭЛТ представляет собой электронный вакуумный прибор в стеклянной колбе, в горловине которого находится электронная пушка, а на дне - экран, покрытый люминофором. Нагреваясь, электронная пушка испускает поток электронов, которые с большой скоростью устремляются к экрану. Поток электронов (электронный луч) проходит через фокусирующую и отклоняющую катушки, которые направляют его в определенную точку покрытого люминофором экрана. Под воздействием ударов электронов люминофор излучает свет, который видит пользователь, сидящий перед экраном компьютера.

В электронно-лучевых мониторах используются три слоя люминофора: красный , зеленый и синий . Для выравнивания потоков электронов применяется так называемая теневая маска - металлическая пластина, имеющая щели или отверстия, которые разделяют красный, зеленый и синий люминофор на группы по три точки каждого цвета. Качество изображения определяется типом используемой теневой маски; на резкость изображения влияет расстояние между группами люминофора (шаг расположения точек).

На рис. 31 показан типичная электронно-лучевая трубка в разрезе.

Рис. 31 – Цветная ЭЛТ в разрезе: 1 – электронные пушки; 2 – электронные лучи; 3 – фокусирующая катушка; 4 – отклоняющие катушки; 5 – анод; 6 – теневая маска; 7 – люминофор; 8 – маска и зерна люминофора в увеличении.

Химическое вещество, используемое в качестве люминофора, характеризуется временем послесвечения, которое отражает длительность свечения люминофора после воздействия электронного пучка. Время послесвечения и частота обновления изображения должны соответствовать друг другу, чтобы не было заметно мерцание изображения (если время послесвечения очень мало) и отсутствовали размытость и удвоение контуров в результате наложения последовательных кадров (если время послесвечения слишком велико).

Электронный луч движется очень быстро, прочерчивая экран строками слева направо и сверху вниз по траектории, именуемой растром. Период сканирования по горизонтали определяется скоростью перемещения луча поперек экрана. В процессе развертки (перемещения по экрану) луч воздействует на те элементарные участки люминофорного покрытия экрана, где должно появиться изображение. Интенсивность луча постоянно меняется, в результате чего изменяется яркость свечения соответствующих участков экрана. Поскольку свечение исчезает очень быстро, электронный луч должен вновь и вновь пробегать по экрану, возобновляя его. Этот процесс называется регенерацией изображения.

В большинстве мониторов частота регенерации, которую также называют частотой вертикальной развертки, во многих режимах приблизительно равна 85 Гц, т.е. изображение на экране обновляется 85 раз в секунду. Снижение частоты регенерации приводит к мерцанию изображения, что очень утомляет глаза. Следовательно, чем выше частота регенерации, тем комфортнее себя чувствует пользователь.

Очень важно, чтобы частота регенерации, которую может обеспечить монитор, соответствовала частоте, на которую настроен видеоадаптер. Если такого соответствия нет, изображение на экране вообще не появится, а монитор может выйти из строя. В целом видеоадаптеры обеспечивают намного большую частоту регенерации, чем поддерживается большинством мониторов. Именно поэтому изначальная частота регенерации, определенная для большинства видеоадаптеров с целью предотвращения повреждения монитора, составляет 60 Гц.

В настоящее время мониторы на базе ЭЛТ можно считать морально устаревшими.

ЖК мониторы

Экраны LCD-мониторов (Liquid Crystal Display, жидкокристаллические мониторы (ЖК-мониторы)) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности оптических), связанных с упорядоченностью в ориентации молекул.

Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 г. Однако долгое время никто не знал, как их применить на практике и никому, кроме физиков и химиков, они не были интересны. В конце 1966 г. корпорация RCA продемонстрировала прототип LCD-монитора – цифровые часы.

Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселей.

Принцип работы ЖК мониторов

Работа ЖК-мониторов основана на явлении поляризации светового потока. Известно, что так называемые кристаллы поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы "просеивает" свет, данный эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электро-статическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.

Экран LCD монитора представляет собой массив маленьких сегментов (называемых пикселями), которыми можно манипулировать для отображения информации. LCD монитор имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой, рис. 32.

Рис. 32 – структура экрана LCD монитора

На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках.

Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу.

Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света).

Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели, рис. 33.

Рис. 33 – Поворот плоскости поляризации светового луча

При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы, рис. 34.

Рис. 34 – Положение молекул в присутствии электрического поля

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем, рис 35а.

Рис. 35 – Прохождение света без наличия электрического поля (а) и при наличии (б)

В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным, (лучи подсветки поглощаются в экране полностью) рис. 35б. Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность при правильном управлении потенциалами этих электродов отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут иметь любую форму.

Технологические новшества позволили ограничить размеры электродов величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD монитора, и позволяет нам отображать даже сложные изображения в цвете.

Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.

В случае с цветом существует несколько возможностей: можно сделать несколько фильтров друг за другом (приводит к малой доле проходящего излучения), можно воспользоваться свойством жидкокристаллической ячейки - при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.

Первые LCD дисплеи были очень маленькими, около 8 дюймов, в то время как сегодня они достигли 15" размеров для использования в ноутбуках, а для настольных компьютеров производятся 20" и более LCD мониторы. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.

STN - это сокращение, означающее "Super Twisted Nematic". Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD дисплея с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.

Часто STN ячейки используются в паре. Такая конструкция называется DSTN (Double Super Twisted Nematic), в которой одна двухслойная DSTN-ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в "запертом" состоянии, теряет большую часть своей энергии. Контрастность и разрешающая способность DSTN достаточно высокая, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходится три ЖК-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки - их обязательный атрибут. Для сокращения габаритов лампа находится с боку, а напротив нее зеркало.

Рис. 36 – Задняя подсветка LCD монитора

Также STN ячейки используются в режиме TSTN (Triple Super Twisted Nematic), когда два тонких слоя полимерной пленки добавляются для улучшения цветопередачи цветных дисплеев или для обеспечения хорошего качества монохромных мониторов.

Термин пассивная матрица (passive matrix) появился в результате разделения монитора на точки, каждая из которых, благодаря электродам, может задавать ориентацию плоскости поляризации луча, независимо от остальных, так что в результате каждый такой элемент может быть подсвечен индивидуально для создания изображения. Матрица называется пассивной, потому что технология создания LCD дисплеев, которая была описана выше, не может обеспечить быструю смену информации на экране. Изображение формируется строка за строкой путем последовательного подвода управляющего напряжения на отдельные ячейки, делающего их прозрачными. Из-за довольно большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому обновление картинки происходит медленно. Такой дисплей имеет много недостатков с точки зрения качества, потому что изображение не отображается плавно и дрожит на экране. Маленькая скорость изменения прозрачности кристаллов не позволяет правильно отображать движущиеся изображения.

Для решения части вышеописанных проблем применяют специальные технологии, Для улучшения качества динамического изображения было предложено увеличить количество управляющих электродов. То есть вся матрица разбивается на несколько независимых подматриц (Dual Scan DSTN - два независимых поля развертки изображения), каждая из которых содержит меньшее количество пикселей, поэтому поочередное управление ими занимает меньше времени. В результате чего можно сократить время инерции ЖК.

В настоящее время Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS (SFT) и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, применённый в конкретных разработках.

TN + film (Twisted Nematic + film)

TN + film - самая простая технология. Часть film в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку film часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

Матрица TN работает следующим образом: если к пикселям не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

Недостатки : худшая цветопередача, наименьшие углы обзора.

IPS (In-Plane Switching) или SFT (Super Fine TFT)

Технология In-Plane Switching (Super Fine TFT) была разработана компаниями Hitachi и NEC. Эти компании пользуются этими двумя разными названиями одной технологии - NEC technologies ltd. использует SFT, а Hitachi - IPS. Технология предназначалась для избавления от недостатков TN + film. Однако сначала, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение чёрного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а чёрным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено различными модификациями технологиями S-IPS (Super-IPS), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика, а также увеличением контрастности.

Достоинства : отличная цветопередача, большие углы обзора

Недостатки : большое время отклика, высокая себестоимость.

VA (Vertical Alignment)

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам. MVA (Multi-domain Vertical Alignment). Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160° (на современных моделях мониторов до 176-178°), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий чёрный цвет и отсутствие как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения.

Аналогами MVA являются технологии:

    PVA (Patterned Vertical Alignment) от Samsung.

    Super PVA от Samsung.

    Super MVA от CMO.

Основные технические характеристики LCD мониторов

    Разрешение - горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаютсяинтерполяцией;

    Размер точки (размер пикселя) - расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением;

    Соотношение сторон экрана(пропорциональный формат) - отношение ширины к высоте (5:4, 4:3, 16:9 и др.);

    Видимая диагональ - размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали;

    Контрастность - отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению;

    Яркость - количество света, излучаемое дисплеем, обычно измеряется в канделахна квадратный метр;

    Время отклика - минимальное время, необходимое пикселю для изменения своей яркости;

    Угол обзора - угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.

Преимущества и недостатки ЖК мониторов

К их преимуществам ЖК можно отнести:

    малый размер и вес в сравнении с ЭЛТ;

    У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью;

    Энергопотребление ЖК-мониторов в зависимости от модели, настроек и выводимого изображения может быть существенно ниже;

    Энергопотребление ЖК-мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки ЖК-матрицы.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки , часто принципиально трудноустранимые, например:

    В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости;

    Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах);

    Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения;

    Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки);

    Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев;

    Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии;

    Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих.

Плазменные мониторы

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24", созданные с использованием ЭЛТ технологии, были слишком тяжелыми и громоздкими. ЖК-мониторы - плоские и легкие, но экраны, размер которых больше 20", обладали слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов.

Идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз решить могли. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская Фондовая Биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов, рис. 37. Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Рис. 37 – Структура плазменной панели

Для того чтобы "зажечь" пиксель происходит следующее. На два ортогональных друг другу питающий и управляющий электроды, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов, и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для "поджига" на сканирующий электрод, подается импульс, одноименные потенциалы складываются, вектор электростатического поля удваивает свою величину. Происходит разряд - часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

Рис. 38 – Процесс генерации ячейкой видимого света

Основные преимущества . Высокая яркость (до 500 кд/м2) и контрастность (до 400:1) наряду с отсутствием дрожания являются большими преимуществами таких мониторов (Для сравнения: у профессионального ЭЛТ-монитора яркость равна приблизительно 350, а у телевизора - от 200 до 270 кд/м2 при контрастности от 150:1 до 200:1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей, (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях - даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким, поэтому срок службы плазменных мониторов в большинстве случаев ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информа-ционных щитов, т.е. там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров.

Технология OLED

Принцип действия. Для создания органических светодиодов (OLED) используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров. При подаче на анод положительного относительно катода напряжения, поток электронов протекает через прибор от катода к аноду. Таким образом катод отдает электроны в эмиссионный слой, а анод забирает электроны из проводящего слоя, или другими словами анод отдает дырки в проводящий слой. Эмиссионный слой получает отрицательный заряд, а проводящий слой положительный. Под действием электростатических сил электроны и дырки движутся навстречу друг к другу и при встрече рекомбинируют. Это происходит ближе к эмиссионному слою, потому что в органических полупроводниках дырки обладают большей подвижностью, чем электроны. При рекомбинации происходит понижение энергии электрона которое сопровождается выделением (эмиссией) электромагнитного излучения в области видимого света. Поэтому слой и называется эмиссионным. Прибор не работает при подаче на анод отрицательного относительно катода напряжения. В этом случае дырки движутся к аноду, а электроны в противоположном направлении к катоду, и рекомбинации не происходит.

Рис. 39 – Схема 2-х слойной OLED-панели: 1 - катод(−); 2 - эмиссионный слой; 3 - испускаемое излучение; 4 - проводящий слой; 5 - анод (+)

В качестве материала анода обычно используется оксид индия легированный оловом. Он прозрачный для видимого света и имеет высокую работу выхода, которая способствует инжекции дырок в полимерный слой. Для изготовления катода часто используют металлы, такие как алюминий и кальций, так как они обладают низкой работой выхода, способствующей инжекции электронов в полимерный слой.

Классификация по способу управления. Существуют два вида OLED-дисплеев - PMOLED и AMOLED. Разница заключается в способе управления матрицей - это может быть либо пассивной матрицей (PM) или активной матрицей (AM).

В PMOLED -дисплеях используются контроллеры развертки изображения на строки и столбцы. Чтобы зажечь пиксель, необходимо включить соответствующую строку и столбец: на пересечении строки и столбца пиксель будет излучать свет. За один такт можно заставить светиться только один пиксель. Поэтому чтобы заставить светиться весь дисплей, необходимо очень быстро подать сигналы на все пиксели путем перебора всех строк и столбцов. Как это делается в старых.

Рис. 40 – Схема OLED-панели с пассивной матрицей

Дисплеи на базе PMOLED получаются дешевыми, но из-за необходимости строчной развертки изображения не возможно получить дисплеи больших размеров с приемлемым качеством изображения. Обычно размеры PMOLED-дисплеев не превышают 3" (7,5 см).

В AMOLED -дисплеях каждый пиксель управляется напрямую, поэтому они могут быстро воспроизводить изображение. Для управления каждой ячейкой OLED используются транзисторы, запоминающие необходимую для поддержания светимости пикселя информацию. Управляющий сигнал подается на конкретный транзистор, благодаря чему ячейки обновляются достаточно быстро. Размеры AMOLED-дисплеев могут иметь большие размеры, и на сегодня уже созданы дисплеи с размером 40" (100 см). Производство AMOLED-дисплеев дорогое из-за сложной схемы управления пикселями, в отличие от PMOLED-дисплеев, где для управления достаточно простого контроллера.

Рис. 41 – Схема OLED-панели с активной матрицей

Классификация по светоизлучающему материалу. В настоящее время в основном развиваются две технологии, показавшие наибольшую эффективность. Различаются они используемыми органическими материалами это микромолекулы (sm-OLED) и полимеры (PLED), последние делятся на просто полимеры, полимерорганические соединения (POLED), и фосфоресцирующие(PHOLED).

Схемы цветных OLED дисплеев. Существуют три схемы цветных OLED дисплеев:

    схема с раздельными цветными эмиттерами;

    схема WOLOD+CF (белые эмиттеры + цветные фильтры);

    схема с конверсией коротковолнового излучения.

Самый простой и привычный вариант – обычная трехцветная модель, которая в технологии OLED называется моделью с раздельными эмиттерами. Три органических материала излучают свет базовых цветов – R, G и B. Этот вариант самый эффективный с позиции использования энергии, однако, на практике оказалось довольно сложно подобрать материалы, которые будут излучать свет с нужной длиной волны, да еще с одинаковой яркостью.

Рис. 42 – Схемы цветных OLED дисплеев

Второй вариант использует три одинаковых белых эмиттера, которые излучают через цветные фильтры, однако он значительно проигрывает по эффективности использования энергии первому варианту, поскольку значительная часть излученного света теряется в фильтрах.

В третьем варианте (CCM – Color Changing Media) применяются голубые эмиттеры и специально подобранные люминесцентные материалы для преобразования коротковолнового голубого излучения в более длинноволновые – красный и зеленый. Голубой эмиттер, естественно, излучает «напрямую». У каждого из вариантов есть свои достоинства и недостатки:

Основные направления современных исследований и разработок

PHOLED (Phosphorescent OLED) - технология, являющаяся достижением Universal Display Corporation (UDC) совместно с Принстонским университетоми университетом Южной Калифорнии. Как и все OLED, PHOLED функционируют следующим образом: электрический ток подводится к органическим молекулам, которые испускают яркий свет. Однако, PHOLED используют принцип электрофосфоресценции, чтобы преобразовать до 100 % электрической энергии в свет. К примеру, традиционные флуоресцентные OLED преобразовывают в свет приблизительно 25-30 % электрической энергии. Из-за их чрезвычайно высокого уровня эффективности энергии, даже по сравнению с другим OLED, PHOLED изучаются для потенциального использования в больших дисплеях типа телевизионных мониторов или экранов для потребностей освещения. Потенциальное использование PHOLED для освещения: можно покрыть стены гигантскими PHOLED-дисплеями. Это позволило бы всем комнатам освещаться равномерно, вместо использования лампочек, которые распределяют свет неравномерно по комнате. Или мониторы-стены или окна - удобно для организаций или любителей поэкспериментировать с интерьером. Также к преимуществам PHOLED-дисплеев можно отнести яркие, насыщенные цвета, а также достаточно долгий срок службы.

TOLED - прозрачные светоизлучающие устройства TOLED (Transparent and Top-emitting OLED) - технология, позволяющая создавать прозрачные (Transparent) дисплеи, а также достигнуть более высокого уровня контрастности.

Рис. 43 – Пример использования TOLED дисплея

Прозрачные TOLED-дисплеи: направление излучения света может быть только вверх, только вниз или в оба направления (прозрачный). TOLED может существенно улучшить контраст, что улучшает читабельность дисплея при ярком солнечном свете.

Так как TOLED на 70 % прозрачны при выключении, то их можно крепить прямо на лобовое стекло автомобиля, на витрины магазинов или для установки в шлеме виртуальной реальности. Также прозрачность TOLED позволяет использовать их с металлом, фольгой, кремниевым кристаллом и другими непрозрачными подложками для дисплеев с отображением вперед (могут использоваться в будущих динамических кредитных картах). Прозрачность экрана достигается при использовании прозрачных органических элементов и материалов для изготовления электродов.

За счёт использования поглотителя с низким коэффициентом отражения для подложки TOLED-дисплея контрастное отношение может на порядок превзойти ЖКИ (мобильные телефоны и кабины военных самолетов-истребителей). По технологии TOLED также можно изготавливать многослойные устройства (например SOLED) и гибридные матрицы (Двунаправленные TOLED делают возможным удвоить отображаемую область при том же размере экрана - для устройств, у которых желаемый объём выводимой информации шире, чем существующий).

FOLED (Flexible OLED) - главная особенность - гибкость OLED-дисплея. Используется пластик или гибкая металлическая пластина в качестве подложки с одной стороны, и OLED-ячейки в герметичной тонкой защитной пленке - с другой. Преимущества FOLED: ультратонкость дисплея, сверхнизкий вес, прочность, долговечность и гибкость, которая позволяет применять OLED-панели в самых неожиданных местах.

Staked OLED - технология экрана от UDC (сложенные OLED). SOLED используют следующую архитектуру: изображение подпикселов складывается (красные, синие и зеленые элементы в каждом пикселе) вертикально вместо того, чтобы располагаться рядом, как это происходит в ЖК-дисплее или электронно-лучевой трубке. В SOLED каждым элементом подпиксела можно управлять независимо. Цвет пиксела может быть отрегулирован при изменении тока, проходящего через три цветных элемента (в нецветных дисплеях используется модуляция ширины импульса). Яркостью управляют, меняя силу тока. Преимущества SOLED: высокая плотность заполнения дисплея органическими ячейками, посредством чего достигается хорошее разрешение, а значит, высококачественная картинка. .(В SOLED-дисплеях в 3 раза улучшено качество изображения в сравнении с ЖКИ и ЭЛТ.

Преимущества и недостатки OLED

Преимущества:

Преимущества в сравнении c плазменными дисплеями:

    меньшие габариты и вес;

    более низкое энергопотреблениепри той же яркости;

    возможность создания гибких экранов.

Преимущества в сравнении c жидкокристаллическими дисплеями:

    меньшие габариты и вес;

    отсутствие необходимости в подсветке;

    отсутствие такого параметра как угол обзора- изображение видно без потери качества с любого угла.

    мгновенный отклик (на порядок выше, чем у LCD) - по сути полное отсутствие инерционности;

    более качественная цветопередача(высокийконтраст);

    возможность создания гибких экранов;

    большой диапазон рабочих температур (от −40 до +70C).

Яркость. OLED-дисплеи обеспечивают яркость излучения от нескольких кд/м2 (для ночной работы) до очень высоких яркостей - свыше 100 000 кд/м2, причем их яркость может регулироваться в очень широком динамическом диапазоне. Так как срок службы дисплея обратно пропорционален его яркости, для приборов рекомендуется работа при более умеренных уровнях яркости до 1000 кд/м2. При освещении LCD-дисплея ярким лучом света появляются блики, а картинка на OLED-экране останется яркой и насыщенной при любом уровне освещенности (даже при прямом попадании солнечных лучей на дисплей).

Контрастность. Здесь OLED также лидер. OLED-дисплеи обладают контрастностью 1000000:1 (Контрастность LCD порядка 5000:1, CRT порядка 2000:1)

Углы обзора. Технология OLED позволяет смотреть на дисплей с любой стороны и под любым углом, причем без потери качества изображения.

Энергопотребление. Меньшее энергопотребление при одинаковой яркости.

Недостатки:

    маленький срок службы люминофоров некоторых цветов (порядка 2-3 лет);

    дороговизна и неотработанность технологии по созданию больших матриц;

Главная проблема для OLED - время непрерывной работы должно быть не более 15 тыс. часов. Проблема, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причем время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Однако можно считать это временными трудностями становления новой технологии, поскольку разрабатываются новые все более долговечныелюминофоры.