Dvi цифровой или аналоговый. HDMI интерфейс — виды, характеристики, плюсы и минусы выхода, советы по выбору hdmi кабеля

Помимо того факта, что ЖК-мониторы для отображения картинки требуют цифровые данные, они отличаются от классических ЭЛТ-дисплеев ещё несколькими особенностями. К примеру, в зависимости от возможностей монитора, на ЭЛТ можно вывести практически любое разрешение, поскольку трубка не имеет чётко заданного числа пикселей.

А ЖК-мониторы из-за принципа своей работы всегда имеют фиксированное ("родное") разрешение, при котором монитор обеспечит оптимальное качество картинки. С DVI это ограничение не имеет ничего общего, так как его основная причина заключается в архитектуре ЖК-монитора.

ЖК-монитор использует массив крохотных пикселей, каждый из которых состоит из трёх диодов, по одному на основной цвет (RGB: красный, зелёный, синий). ЖК-экран, имеющий "родное" разрешение 1600x1200 (UXGA), состоит из 1,92 миллиона пикселей!

Конечно же, ЖК-мониторы способны выводить другие разрешения. Но в таких случаях картинку придётся масштабировать или интерполировать. Если, к примеру, ЖК-монитор имеет "родное" разрешение 1280x1024, то меньшее разрешение 800x600 будет растянуто до 1280x1024. Качество интерполяции зависит от модели монитора. Альтернативой является вывод уменьшенного изображения в "родном" разрешении 800x600, но при этом придётся довольствоваться чёрной рамкой.

На обоих кадрах показана картинка с экрана ЖК-монитора. Слева выведено изображение в "родном разрешении" 1280x1024 (Eizo L885). Справа находится интерполированное изображение в разрешении 800x600. В результате увеличения пикселей картинка выглядит блочной. Таких проблем на ЭЛТ-мониторах не существует.

Для отображения разрешения 1600x1200 (UXGA) с 1,92 миллиона пикселей и частотой вертикальной развёртки 60 Гц монитору требуется высокая пропускная способность. Если посчитать, то необходима частота 115 МГц. Но на частоту влияют и другие факторы, например прохождение области гашения, поэтому требуемая пропускная способность возрастает ещё больше.

Около 25% всей передаваемой информации относится ко времени гашения. Оно нужно для смены позиции электронной пушки на следующую строчку в ЭЛТ-мониторе. В то же время, ЖК-мониторам время гашения практически не требуется.

Для каждого кадра передаётся не только информация об изображении, но и учитываются границы, а также область гашения. ЭЛТ-мониторам необходимо время гашения, чтобы выключить электронную пушку по завершению вывода строчки на экране и перевести её на следующую строчку для продолжения вывода. То же самое происходит в конце картинки, то есть в нижнем правом углу - электронный луч выключается и меняет позицию на верхний левый угол экрана.

Около 25% всех пиксельных данных относятся ко времени гашения. Поскольку ЖК-мониторы электронную пушку не используют, здесь время гашения совершенно ни к чему. Но его пришлось учитывать в стандарте DVI 1.0, поскольку он позволяет подключать не только цифровые ЖК, но и цифровые ЭЛТ-мониторы (где ЦАП встроен в монитор).

Время гашения оказывается очень важным фактором при подключении ЖК-дисплея по DVI-интерфейсу, поскольку каждое разрешение требует определённой пропускной способности от передатчика (видеокарта). Чем выше требуемое разрешение, тем больше должна быть пиксельная частота TMDS-передатчика. Стандарт DVI оговаривает максимальную пиксельную частоту 165 МГц (один канал). Благодаря десятикратному умножению частоты, описанному выше, мы получаем пиковую пропускную способность данных в 1,65 Гбайт/с, которой будет достаточно для разрешения 1600x1200 на 60 Гц. Если требуется большее разрешение, то дисплей следует подключать по двухканальному DVI (Dual Link DVI), тогда два DVI-передатчика будут работать совместно, что даст удвоение пропускной способности. Подробнее этот вариант описан в следующем разделе.

Впрочем, более простым и дешёвым решением будет уменьшение данных гашения. В результате, видеокартам будет предоставлено больше пропускной способности, и даже DVI-передатчик на 165 МГц сможет справиться с более высокими разрешениями. Ещё одним вариантом можно считать уменьшение частоты горизонтального обновления экрана.

В верхней части таблицы показаны разрешения, которые поддерживает один DVI-передатчик на 165 МГц. Уменьшение данных гашения (в середине) или частоты обновления (Гц) позволяет достичь больших разрешений.


На этой иллюстрации показано, какая пиксельная частота требуется для определённого разрешения. Верхняя строчка показывает работу ЖК-монитора с уменьшенными данными гашения. Второй ряд (60Hz CRT GTF Blanking) показывает требуемую пропускную способность ЖК-монитора, если данные гашения нельзя уменьшить.

Ограничение TMDS-передатчика пиксельной частотой 165 МГц сказывается также и на максимально возможном разрешении ЖК-дисплея. Даже при уменьшении данных гашения мы всё равно упираемся в определённый предел. Да и снижение частоты горизонтального обновления может дать не очень хороший результат в некоторых приложениях.

Чтобы решить эту проблему, спецификация DVI оговаривает дополнительный режим работы, названный Dual Link. В данном случае используется сочетание двух TMDS-передатчиков, которые передают данные на один монитор через один разъём. Доступная пропускная способность удваивается до 330 МГц, чего вполне достаточно для вывода практически любого существующего разрешения. Важное замечание: видеокарта с двумя выходами DVI не является картой Dual Link, у которой два TMDS-передатчика работают через один порт DVI!

На иллюстрации показан двухканальный режим работы DVI, когда используется два TMDS-передатчика.

Впрочем, видеокарты с хорошей поддержкой DVI и уменьшенной информацией гашения будет вполне достаточно для вывода информации на один из новых 20" и 23" дисплеев Apple Cinema в "родном" разрешении 1680x1050 или 1920x1200, соответственно. В то же время, для поддержки 30" дисплея с разрешением 2560x1600 от интерфейса Dual Link уже никуда не деться.

Из-за высокого "родного" разрешения 30" дисплей Apple Cinema требует подключения по Dual Link DVI!

Хотя два разъёма DVI уже стали стандартом на high-end 3D-картах для рабочих станций, не все видеокарты потребительского уровня могут этим похвастаться. Благодаря двум разъёмам DVI мы всё же можем использовать интересную альтернативу.

На этом примере два одноканальных порта используются для подключения дисплея на девять мегапикселей (3840x2400). Картинка просто разделена на две части. Но этот режим должны поддерживать и монитор, и видеокарта.

На данный момент можно найти шесть различных разъёмов DVI. Среди них: DVI-D для полностью цифрового подключения в одноканальной и двухканальной версиях; DVI-I для аналогового и цифрового подключения в двух версиях; DVI-A для аналогового подключения и новый разъём VESA DMS-59. Чаще всего производители графических карт оснащают свои продукты двухканальным разъёмом DVI-I, даже если карта имеет один порт. С помощью адаптера порт DVI-I можно превратить в аналоговый выход VGA.

Обзор различных разъёмов DVI.


Раскладка разъёма DVI.

Спецификация DVI 1.0 не оговаривает новый двухканальный разъём DMS-59. Он был представлен рабочей группой VESA в 2003 году и позволяет вывести два выхода DVI на картах малого форм-фактора. Он также призван упростить расположение разъёмов на картах с поддержкой четырёх дисплеев.

Наконец, мы переходим к сути нашей статьи: качество TMDS-передатчиков разных графических карт. Хотя спецификация DVI 1.0 и оговаривает максимальную пиксельную частоту 165 МГц, не все видеокарты дают на ней приемлемый сигнал. Многие позволяют достичь 1600x1200 только на уменьшенных пиксельных частотах и со сниженным временем гашения. Если вы попытаетесь подключить к такой карте устройство HDTV с разрешением 1920x1080 (даже с уменьшенным временем гашения), ваш ждёт неприятный сюрприз.

Все графические процессоры, поставляемые сегодня ATi и nVidia, уже имеют встроенный на чип TMDS-передатчик для DVI. Производители карт на графических процессорах ATi чаще всего используют встроенный передатчик для стандартной комбинации 1xVGA и 1xDVI. Для сравнения, многие карты на графических процессорах nVidia используют внешний TMDS-модуль (к примеру, от Silicon Image), даже несмотря на наличие TMDS-передатчика на самом чипе. Чтобы обеспечить два DVI-выхода, производитель карты всегда устанавливает второй TMDS-чип независимо от того, на каком графическом процессоре базируется карта.

На следующих иллюстрациях показаны обычные дизайны.

Типичная конфигурация: один выход VGA и один DVI. TMDS-передатчик может быть как интегрирован в графический чип, так и вынесен на отдельный чип.

Возможные конфигурации DVI: 1x VGA и 1x Single Link DVI (A), 2x Single Link DVI (B), 1x Single Link и 1x Dual Link DVI, 2x Dual Link DVI (D). Примечание: если на карте установлены два выхода DVI, то это не означает, что они двухканальные! На иллюстрациях E и F показана конфигурация новых портов VESA DMS-59 с высокой плотностью, где обеспечивается четыре или два одноканальных выхода DVI.

Как покажет дальнейшее тестирование в нашей статье, качество выхода DVI на картах ATi или nVidia бывает весьма разным. Даже если отдельный TMDS-чип на карте известен своим качеством, это вовсе не означает, что каждая карта с этим чипом обеспечит высокое качество сигнала DVI. Даже его расположение на графической карте немало влияет на конечный результат.

Совместимость со стандартом DVI

Чтобы протестировать качество DVI современных графических карт на процессорах ATi и nVidia, мы выслали шесть образцов карт в тестовые лаборатории Silicon Image для проверки совместимости со стандартом DVI.

Что интересно, для получения лицензии DVI совсем не обязательно проводить тесты совместимости со стандартом. В результате, на рынок выходят продукты с заявленной поддержкой DVI, которые не соответствуют спецификациям. Одной из причин такого положения дел является сложная и, следовательно, дорогая процедура тестирования.

Отреагировав на эту проблему, компания Silicon Image в декабре 2003 года основала тестовый центр DVI Compliance Test Center (CTC) . Производители устройств с поддержкой DVI могут выслать свои продукты для тестирования на совместимость со стандартом DVI. Собственно, это мы и сделали с нашими шестью графическими картами.

Тесты разделены на три категории: передатчик (обычно видеокарта), кабель и приёмник (монитор). Для оценки совместимости DVI создаются так называемые глазковые диаграммы, представляющие сигнал DVI. Если сигнал не выходит за определённые границы, то тест считается пройденным. В противном случае устройство не совместимо со стандартом DVI.

На иллюстрации показана глазковая диаграмма TMDS-передатчика на частоте 162 МГц (UXGA) с передачей миллиардов битов данных.

Проверка глазковой диаграммы является самым важным тестом для оценки качества сигнала. На диаграмме заметны флуктуации сигнала (дрожь фазы, jitter), искажения амплитуды и эффект "звона". Эти тесты также позволяют наглядно увидеть качество DVI.

Тесты совместимости со стандартом DVI включают в себя следующие проверки.

  1. Передатчик: глазковая диаграмма с заданными границами.
  2. Кабели: создаются глазковые диаграммы до и после передачи сигнала, затем они сравниваются. И вновь, границы отклонения сигнала жёстко заданы. Но здесь уже допускаются большие расхождения с идеальным сигналом.
  3. Приёмник: вновь создаётся глазковая диаграмма, но опять же, допускаются ещё большие расхождения.

Самые большие проблемы при последовательной высокоскоростной передаче связаны с дрожью фазы сигнала. Если такого эффекта нет, то вы всегда можете чётко выделить сигнал на графике. Большинство флуктуаций сигнала создаются тактовым сигналом графического чипа, что приводит к появлению низкочастотной флуктуации частоты в диапазонах от 100 кГц до 10 МГц. На глазковой диаграмме флуктуация сигнала заметна по изменению частоты, данных, данных по отношению к частоте, амплитуды, слишком избыточному или слишком малому подъёму. Кроме того, измерения DVI различаются для разных частот, что необходимо учитывать при проверке глазковой диаграммы. Но благодаря глазковой диаграмме, можно наглядно оценить качество сигнала DVI.

Для измерений анализируется один миллион перекрывающихся участков с помощью осциллографа. Этого достаточно для оценки общей производительности соединения DVI, поскольку сигнал на протяжении длительного периода времени не будет существенно изменяться. Графическое представление данных производится с помощью специального программного обеспечения, которое Silicon Image создала в сотрудничестве с Tektronix. Сигнал, соответствующий спецификации DVI, не должен заступать на границы (синие области), которые автоматически прорисовываются программным обеспечением. Если сигнал попадёт на синюю область, то тест считается не пройденным, а устройство - не соответствующим спецификации DVI. Программа сразу же показывает результат.

Видеокарта не прошла тест совместимости с DVI.

Программное обеспечение сразу же показывает, прошла карта тест, или нет.

Для кабеля, передатчика и приёмника используются разные границы (глазки). Сигнал не должен заступать на эти области.

Чтобы понять, как определяется совместимость с DVI и что необходимо при этом учитывать, нам следует погрузиться в дополнительные детали.

Так как передача DVI полностью цифровая, то возникает вопрос, откуда появляется дрожание фазы сигнала. Здесь можно выдвинуть две причины. Первая - дрожание вызывается самим данными, то есть 24 параллельными битами данных, которые выдаёт графический чип. Однако данные автоматически корректируются в чипе TMDS при необходимости, что гарантирует отсутствие дрожания фазы в данных. Поэтому оставшейся причиной появления дрожания является тактовый сигнал.

На первый взгляд, сигнал данных свободен от помех. Это гарантируется благодаря регистру-защёлке (latch), встроенному в TMDS. Но главной проблемой всё же остаётся тактовый сигнал, который портит поток данных через 10-кратное умножение ФАПЧ.

Так как частота умножается в 10 раз с помощью ФАПЧ, влияние даже небольшого искажения увеличивается. В итоге данные попадают на приёмник уже не в своём первоначальном состоянии.

Сверху показан идеальный тактовый сигнал, ниже - сигнал, где один из фронтов начал передаваться слишком рано. Благодаря ФАПЧ, это напрямую влияет на сигнал данных. В общем, каждое возмущение тактового сигнала приводит к ошибкам при передаче данных.

Когда приёмник семплирует повреждённый сигнал данных с помощью "идеального" тактового сигнала гипотетического ФАПЧ, он получает ошибочные данные (жёлтая полоса).

Как это работает на самом деле: если приёмник будет использовать повреждённый тактовый сигнал передатчика, он всё ещё сможет считать повреждённые данные (красная полоса). Именно поэтому тактовый сигнал тоже передаётся по кабелю DVI! Приёмнику требуется тот же самый (повреждённый) тактовый сигнал.

Стандарт DVI включает в себя устранение дрожания фазы (jitter management). Если оба компонента будут использовать один и тот же повреждённый тактовый сигнал, то информация может считываться из повреждённого сигнала данных без ошибок. Таким образом, совместимые с DVI устройства могут работать даже в условиях наличия низкочастотного дрожания фазы. Ошибку в тактовом сигнале тогда можно обойти.

Как мы уже объясняли выше, DVI работает оптимально, если передатчик и приёмник используют один и тот же тактовый сигнал и их архитектура одинакова. Но так бывает не всегда. Именно поэтому использование DVI может привести к появлению проблем, несмотря на сложные меры предотвращения дрожания фазы.

На иллюстрации показан оптимальный сценарий для передачи DVI. Умножение тактового сигнала в ФАПЧ (PLL) приводит к задержке. И поток данных уже не будет целостным. Но всё выправляется с помощью учёта той же самой задержки в ФАПЧ приёмника, поэтому данные принимаются корректно.

Стандарт DVI 1.0 чётко определяет задержку ФАПЧ. Такая архитектура называется несвязанной (non-coherent). Если ФАПЧ не соответствует данным спецификациям по времени задержки, то могут появиться проблемы. В индустрии сегодня ведутся горячие дискуссии по поводу того, следует ли использовать подобную несвязанную архитектуру. Причём, ряд компаний выступает за полный пересмотр стандарта.

В этом примере используется тактовый сигнал ФАПЧ вместо сигнала графического чипа. Следовательно, сигналы данных и тактовые сигналы согласованы. Однако из-за задержки в ФАПЧ приёмника данные обрабатываются некорректно, и устранение дрожания фазы уже не работает!

Теперь вам должно быть понятно, почему использование длинных кабелей может стать проблемным, даже если не учитывать внешние помехи. Длинный кабель может вносить задержку в тактовый сигнал (напомним, что сигналы данных и тактовые сигналы имеют разные частотные диапазоны), дополнительная задержка может влиять на качество приёма сигнала.

Интерфейсы, массово применяемые в настоящее время:

VGA

(D-Sub) - единственный аналоговый интерфейс подключения мониторов, ещё применяемый в настоящее время. Морально устарел, однако будет активно использоваться ещё длительное время. Главный недостаток связан с необходимостью применения двойного преобразования сигнала в аналоговый формат и обратно, что приводит к потере качества при подключении цифровых устройств отображения (LCD мониторов , плазменных панелей, проекторов). Совместим с видеокартами с DVI-I и аналогичным разъёмом.

DVI-D

- базовый тип DVI интерфейса. Подразумевает только цифровое подключение, поэтому не может использоваться с видеокартами, имеющими только аналоговый выход. Очень широко распространен.

DVI-I

- расширенный вариант интерфейса DVI-D , наиболее часто встречающийся в настоящее время. Содержит 2 типа сигналов - цифровой и аналоговый. Видеокарты можно подключать как по цифровому, так и по аналоговому соединению, видеокарту с VGA(D-Sub)-выходом можно подключить к нему через простой пассивный переходник или специальным кабелем.
Если в документации к монитору указано, что в данной модификации применён вариант DVI Dual-Link, то для полноценной поддержки максимальных разрешений монитора (обычно это 1920*1200 и выше) видеокарта и применяемый DVI кабель также должны поддерживать Dual-Link, как полный вариант интерфейса DVD-D. Если используется кабель из комплекта монитора и относительно современная (на момент написания FAQ) видеокарта, то никаких дополнительных приобретений не требуется.

HDMI

- адаптация DVI-D для бытовой аппаратуры, дополненная цифровым интерфейсом для передачи многоканального звука. Присутствует фактически во всех современных LCD-телевизорах, плазменных панелях и проекторах. Для подключения к HDMI разъёму видеокарты с интерфейсом DVI-D или DVI-I достаточно простого пассивного переходника или кабеля соответствующими разъёмами. Видеокарту только с VGA (D-Sub) разъёмом подключить к HDMI невозможно!

Устаревшие и экзотические интерфейсы:

Типы разъемов DVI и их технические характеристики

У многих возникает проблема правильного определения и выбора необходимого переходника для видеокарты или монитора. Для облегчения данной задачи мы представляем вашему вниманию таблицу отличий с указанием типа разъемов DVI, а также информацию об их технических характеристиках.

Виды DVI

DVI-A - только аналоговая передача.
DVI-I - аналоговая и цифровая передача.
DVI-D - только цифровая передача.

Видеокарты с DVI-A не поддерживают мониторы соответствующие стандарту DVI-D.
Видеокарту с DVI-I можно подключить к DVI-D–монитору (кабелем с двумя коннекторами DVI-D–вилка).
Переходник DVI-I на VGA существует.
Переходника DVI-D на VGA с функцией передачи видео не существует, только специальные конвертеры , которые имеют высокую стоимость (от 35 у.е.). В продаже имеются технологические переходники DVI-VGA, которые служат для других целей и не подходят для конвертации видеосигнала.

Технические характеристики

Формат данных, используемый в DVI, основан на PanelLink - формате последовательной передачи данных, разработанном фирмой Silicon Image. Использует технологию высокоскоростной передачи цифровых потоков TMDS (Transition Minimized Differential Signaling, дифференциальная передача сигналов с минимизацией перепадов уровней) - три канала, передающие потоки видео и дополнительных данных, с пропускной способностью до 3,4 Гбит/с на канал.

Максимальная длина кабеля не указана в спецификации DVI, потому что она зависит от количества передаваемой информации. Кабель длиной 10,5 метра можно использовать для передачи изображения с разрешением до 1920 x 1200 точек. По кабелю длиной 15 метров получится передать в нормальном качестве изображение с разрешением 1280 x 1024 точек. Для усиления сигнала при передаче по кабелю большой длины применяются специальные устройства. При их использовании длина кабеля может быть увеличена до 61 метра (в случае использования усилителя с собственным источником питания).
Разновидности разъёмов DVI

Single link (одинарный режим) DVI использует четыре витых пары проводов (красный, зелёный, синий, и clock), обеспечивающих возможность передавать 24 бита на пиксель. С ним может быть достигнуто максимальное возможное разрешение 1920x1200 (60 Гц) или 1920x1080 (75 Гц).

Dual link (двойной режим) DVI удваивает пропускную способность и позволяет получать разрешения экрана 2560x1600 и 2048x1536. Поэтому для самых крупных ЖК мониторов с большим разрешением, таких, как 30" модели, обязательно нужна видеокарта с двухканальным DVI-D Dual-Link выходом. Если у монитора максимальное разрешение экрана 1280x1024, то подключать его кабелем dual link не имеет смысла, т. к. данный кабель предназначен для мониторов с бо́льшим разрешением.

Источник информации -

Вывести видео изображение на монитор или телевизор сегодня можно разными способами – вариантов портов для подключения с каждым годом становится всё больше, и не мудрено запутаться в количестве и разнице интерфейсов.

Разберемся в наиболее популярных форматах и определим случаи, когда тот или иной стандарт видео порта подойдет лучше всего.

VGA

Старейший из стандартов сопряжения ПК и монитора, который существует по сей день. Разработанный еще в 1987-м году компанией IBM компонентный видеоинтерфейс, использует аналоговый сигнал для передачи цветовой информации. В отличии от более современных стандартов, VGA не позволяет передавать звук – только картинку.

Коннектор VGA, как правило, синего цвета с двумя винтами по бокам. Он имеет 15-контактный разъем и изначально мог работать только на разрешении 640 на 480 пикселей, используя палитру из 16-ти цветов. Позже стандарт развился в так называемый Super VGA, поддерживающий более высокие расширения экрана и количество цветов до 16 миллионов цветов. А так как усовершенствованный стандарт продолжил использовать старый порт и внешне не изменился, то и называют его по старинке просто VGA.

Чаще всего данный формат используется на старом оборудовании, однако многие компьютеры по-прежнему снабжены этим портом. Что называется – на всякий случай.

DVI

Больше десяти лет спустя после выхода стандарта VGA свет увидел формат DVI – цифровой видеоинтерфейс. Вышедший в 1999-м году интерфейс был способен передавать видео без компрессии в одном из трех режимов: DVI-I (Integrated) – объединенный формат цифровой и аналоговой передачи, DVI-D (Digital) – поддержка только цифрового сигнала, DVI-A (Analog) – поддержка только аналогового сигнала.

Порты DVI-I и DVI-D могут идти в одинарном или двойном режиме. Во втором случае удваивается пропускная способность, что позволяет получать разрешение экрана высокой четкости – до 2048 на 1536 точек. Однако для этого нужно иметь и соответствующую видеокарту. Сами порты отличаются количеством контактов – так одинарный режим (Single link) использует четыре витых пары проводов (максимальное разрешение 1920 на 1200 пикселей при 60 Гц), а двойной режим (Dual link), соответственное, большее число контактов и проводов (разрешение до 2560 на 1600 при 60 Гц).

Важно помнить, что аналоговый вариант DVI-A не поддерживает мониторы стандарта DVI-D, а видеокарту с DVI-I можно подключить к монитору DVI-D кабелем с двумя коннекторами DVI-D-вилка. По аналогии с VGA, данный стандарт также передает на экран только видео изображение без звука. Однако с 2008-го года производители видеокарт сделали передачу звука возможной – для этого необходимо использовать кабель DVI-D – HDMI.

Также можно встретить на рынке и формат mini-DVI, придуманный компанией Apple, склонной к уменьшению всего и вся. Однако мини-стандарт работает только в одинарном режиме, а значит не поддерживает расширение выше, чем 1920 на 1200 пикселей.

HDMI

High Definition Multimedia Interface или интерфейс для мультимедиа высокой четкости позволяет передавать цифровые видео и аудио сигналы, да еще и с возможностью защиты от копирования. HDMI меньше своих предшественников по размеру, работает на более высокой скорости, а главное – передает звук, что позволило отправить на пенсию прежние стандарты SCART и RCA («тюльпаны») для подключения видеоустройств к телевизорам.

Спецификация HDMI 1.0 появилась в конце 2002 года и имела максимальную пропускную способность 4,9 Гб/с, поддержку 8-канального звука и видео до 165 МПикс/сек (то есть FullHD при 60 Гц). С тех пор стандарт постоянно развивался, а в 2013-м увидела свет спецификация HDMI 2.0 с пропускной способностью до 18 Гбит/с, поддержкой разрешения 4К (3840 на 2160 пикселей при 60 Гц) и 32-канального звука.

Сегодня стандарт HDMI используют не только компьютеры, но и цифровые телевизоры, DVD и Blu-ray проигрыватели, игровые приставки и многие другие устройства. При желании можно использовать переходники с HDMI на DVI и обратно.

Число контактов на HDMI портах начинается от 19-ти, а сами разъемы выпускаются в нескольких форм-факторах, самые распространенные из которых HDMI (Type-A), mini-HDMI (Type-C), micro-HDMI (Type D). Кроме того, есть HDMI порты для приема сигнала (HDMI-In) и для передачи (HDMI-Out). Внешне они практически неотличимы, но если, скажем, у вашего моноблока есть оба порта, то при попытке вывести картинку на второй монитор вы сможете воспользоваться только одним из них, а конкретно тем, что HDMI-Out.

DisplayPort

В 2006-м году был принят еще один видеостандарт для цифровых мониторов. DisplayPort, также как HDMI, передает не только видео, но и аудио, и служит для подключения компьютера с дисплеем или домашним кинотеатром. DisplayPort имеет более высокую скорость передачи данных, поддержку разрешения вплоть до 8К (7680 на 4320 пикселей при 60 Гц) в версии 1.4, вышедшей в марте 2016-го, а картинку через порт можно выводить на несколько мониторов (от двух до четырех, в зависимости от разрешения).

DisplayPort специально разрабатывался для вывода картинки с компьютеров на мониторы, тогда как HDMI больше предназначался для подключения различных устройств к телевизору. Однако данные порты можно использовать вместе при помощи адаптера Dual-Mode DisplayPort.

Есть также и вариации Mini DisplayPort, применяющиеся в первую очередь в ноутбуках. В частности, уменьшенный формат любим компанией Apple.

Thunderbolt

Наконец, стандарт от компании Intel (при совместной работе с Apple) для подключения переферийных устройств к компьютеру. Именно Apple была первой, кто в 2011-м году выпустил устройство с данным интерфейсом – ноутбук MacBook Pro.

Максимальная скорость передачи данных – 20 Гбит/с при использовании оптоволокна для версии 2, тогда как 3-я версия интерфейса способна работать на скорости до 40 Гбит/с. Thunderbolt объединяет в себе не только интерфейс DisplayPort, но и PCI-Express, а значит подключить к нему можно почти всё, что угодно. В частности, допускается подключение к одному порту до шести устройств, что сокращает необходимость иметь на устройстве огромное число различных портов.

Сам разъем Thunderbolt меньше, чем у mini-DisplayPort, а его третья версия и вовсе являет собой порт, совместимый с USB 3.1, то есть выполнен с разъемом USB Type-C.

Универсальный USB

Если вы вдруг переживаете, что в скором времени придется обновлять всю домашнюю технику в связи с изменением стандартов, то не спешите. Производители стремятся упростить историю с многочисленными интерфейсами и обеспечить поддержку старых устройств посредством переходников. В частности, для HDMI устройств необходимо будет использовать лишь соответствующий переходник, дабы иметь возможность подключения к современному порту USB Type-C.

По аналогии с тем, что ранее каждый производитель мобильных телефонов имел собственный разъем для подзарядки, а ныне большинство использует порт micro-USB, видеостандарт также стремится к унификации. И объединяющим форм-фактором должен стать именно USB-порт последнего поколения, по которому будут подключаться как мониторы, так и обычные наушники да гарнитуры.

Довольно часто возникает необходимость в определении типа DVI на видеокарте. Зачастую найти технические характеристики на видеокарту довольно сложно, ведь необходимо знать ее модель и производителя.

Типы DVI разъемов и их совместимость

  • DVI-I Single Link – разъем рассчитан на использование одного аналогового сигнала или одного цифрового. Таким разъемом оснащено большинство современных видеокарт.
  • DVI-D Dual Link – разъем оснащен двумя цифровыми каналами передачи данных. Максимально возможное разрешение, которое можно получить при использовании данного соединения – 2560x1600 (60Гц) или 1920x1080(120Гц) (для nVidia 3D Vision). Напомню, что через это соединение невозможно подключиться к аналоговому монитору.
  • DVI-D Single Link – разъем рассчитан на использование одного цифрового канала.
  • DVI-I Dual Link – самая полная реализация DVI. Включает в себя все возможности подключения по интерфейсу DVI.
  • DVI-A – аналоговый разъем, идентичен VGA и отличается от него только внешним видом.

Как определить тип DVI разъема?

Если нам повезло, то на планке мы обнаружим маркировку типа DVI:

На картинке видно, что один разъем имеет тип DVI-I, другой – DVI-D. Но, какой это разъем: Single Link или Dual Link? В этом случае, для определения пропускной способности разъема, следует обратиться к спецификации на видеокарту.

Второй вариант маркировки типа DVI:

Знак говорит о том, что выход DVI оснащен цифровым каналом передачи данных, то есть его тип DVI-I или DVI-D. Значит через этот тип разъема можно подключиться к монитору оснащенному цифровым входом DVI. Возможность подключения к аналоговому монитору следует проверить по спецификации на видеокарту. То же самое касается наличия режима Dual Link.

Обратите внимание, что внешний вид разъемов отличается! Подробнее об этом мы поговорим ниже.

Еще один вариант маркировки DVI на видеокарте:

Знак и маркировка VGA, говорит о том, что в разъеме DVI присутствует возможность передачи изображения как по цифровому, так и по аналоговому каналу (DVI-I). В этом случае, для подключения к аналоговому монитору, следует воспользоваться специальным переходником DVI-VGA, или кабелем, на одной стороне которого разъем DVI, на другом - VGA.

Определяем тип DVI по внешнему виду разъема на видеокарте

Внимательно посмотрите на свою видеокарту с тыльной стороны системного блока компьютера. Попробуйте найти сходства с рисунками, представленными ниже.

Внешний вид DVI-I:

Следует отметить, что этот тип разъема применяется и для DVI-D.